# Smarc

## User Manual



## HALLEY

SMARC<sup>®</sup> Rel. 2.1.1 compliant module with the Intel<sup>®</sup> Atom<sup>™</sup> x6000E Series and Intel<sup>®</sup> Pentium<sup>®</sup> and Celeron<sup>®</sup> N and J Series processors (formerly Elkhart Lake) for FuSa applications



www.seco.com

### **REVISION HISTORY**

| Revision | Date                           | Note                                                                            | Rif |
|----------|--------------------------------|---------------------------------------------------------------------------------|-----|
| 1.0      | 19 <sup>th</sup> April 2021    | First official release                                                          | AR  |
| 1.1      | 23 <sup>rd</sup> December 2021 | Safety Policy included                                                          | SO  |
| 1.2      | 26 <sup>th</sup> August 2022   | BIOS documentation                                                              | SO  |
| 1.3      | 13th April 2023                | Included engineering samples policy<br>Included decoupling circuit for HDMI 1.4 | SO  |


#### All rights reserved. All information contained in this manual is proprietary material of SECO S.p.A.

Unauthorized use, duplication, or modification by any means without prior consent of SECO S.p.A. is prohibited.

Every effort has been made to ensure the accuracy of this manual. However, SECO S.p.A. accepts no responsibility for any inaccuracies, errors or omissions herein. SECO S.p.A. reserves the right to change precise specifications without prior notice to supply the best product possible.

For further information on this module or other SECO products, but also to get the required assistance for any and possible issues, please contact us using the dedicated web form available at http://www.seco.com (registration required).

Our team is ready to assist.



## INDEX

| napter 1. INTRODUCTION                            | 5  |
|---------------------------------------------------|----|
| .1 Warranty                                       | 6  |
| .2 Information and assistance                     | 7  |
| .3 RMA number request                             | 7  |
| .4 Safety                                         |    |
| .5 Electrostatic Discharges                       |    |
| .6 RoHS compliance                                |    |
| .7 Safety Policy                                  | 9  |
| .8 Terminology and definitions                    |    |
| .9 Reference specifications                       |    |
| hapter 2. OVERVIEW                                | 15 |
| .1 Introduction                                   |    |
| .2 Technical Specifications                       |    |
| .3 Electrical Specifications                      |    |
| 2.3.1 Power Consumption                           |    |
| 2.3.2 Power Rails meanings                        |    |
| .4 Mechanical Specifications                      |    |
| .5 Supported Operating Systems                    |    |
| .6 Block Diagram                                  |    |
| napter 3. CONNECTORS                              | 23 |
| .1 Introduction                                   |    |
| .2 Connectors description                         |    |
| 3.2.1 SMARC Connector                             |    |
| hapter 4. BIOS SETUP                              | 53 |
| .1 Aptio setup Utility                            |    |
| .2 Main setup menu                                |    |
| 4.2.1 System Language / System Date / System Time |    |
| .3 Advanced menu                                  |    |
| 4.3.1 CPU Configuration                           |    |

| 4.3.2      | Power & Performance                                     | 57 |
|------------|---------------------------------------------------------|----|
| 4.3.3      | PCH-FW Configuration                                    | 64 |
| 4.3.4      | Intel® Time Coordinated Computing                       |    |
| 4.3.5      | Trusted computing                                       | 67 |
| 4.3.6      | ACPI Settings                                           | 67 |
| 4.3.7      | Serial Port Console Redirection                         |    |
| 4.3.8      | AMI Graphic Output Protocol Policy<br>USB Configuration | 69 |
| 4.3.9      | USB Configuration                                       | 69 |
| 4.3.10     | Network Stack configuration                             | 70 |
| 4.3.11     | Network Stack configuration<br>NVMe configuration       | 70 |
| 4.3.12     | SDIO configuration                                      | 70 |
| 4.3.13     | Main Thermal Configuration                              | 71 |
| 4.3.14     | LVDS Configuration                                      |    |
| 4.3.15     | Embedded Controller                                     |    |
| 4.3.16     | RAM Disk Configuration                                  |    |
| 4.4 Chip   | oset menu                                               |    |
| 4.4.1      | System Agent (SA) Configuration                         | 76 |
| 4.4.2      | PCH-IO Configuration                                    | /8 |
| 4.5 Sec    | urity menu                                              | 86 |
| 4.5.1      | Secure Boot submenu                                     | 86 |
| 4.6 Boo    | t menu                                                  | 88 |
| 4.7 Sav    | e & Exit menu                                           | 89 |
| Chapter 5. | Appendices                                              |    |
| 5.1 The    | mal Design                                              | 91 |



## Chapter 1. INTRODUCTION

- Warranty
- Information and assistance
- RMA number request
- Safety
- Electrostatic Discharges
- RoHS compliance
- Terminology and definitions
- Reference specifications



## 1.1 Warranty

This product is subject to the Italian Law Decree 24/2002, acting European Directive 1999/44/CE on matters of sale and warranties to consumers.

The warranty on this product lasts for 1 year.

Under the warranty period, the Supplier guarantees the buyer assistance and service for repairing, replacing or credit of the item, at the Supplier's own discretion.

Shipping costs that apply to non-conforming items or items that need replacement are to be paid by the customer.

Items cannot be returned unless previously authorised by the supplier.

The authorisation is released after completing the specific ticketing procedure <u>https://support.seco.com/</u> (web RMA). The RMA authorisation number must be put both on the packaging and on the documents shipped with the items, which must include all the accessories in their original packaging, with no signs of damage to, or tampering with, any returned item.

The error analysis form identifying the fault type must be completed by the customer and has must accompany the returned item.

If any of the above-mentioned requirements for RMA is not satisfied, the item will be shipped back and the customer will have to pay any and all shipping costs.

Following a technical analysis, the supplier will verify if all the requirements, for which a warranty service applies, are met. If the warranty cannot be applied, the Supplier will calculate the minimum cost of this initial analysis on the item and the repair costs. Costs for replaced components will be calculated separately.

SECO offers Engineering Samples for early evaluation and development. Engineering Samples are sold "as-is" with no warranty of any kind, neither explicit nor implied. Here <u>https://www.seco.com/it/EngineeringSamplesPolicy</u> is defined the framework of SECO and customer responsibilities regarding Engineering Samples.



Warning! All changes or modifications to the equipment not explicitly approved by SECO S.p.A. could impair the equipment's functionality and could void the warranty

### 1.2 Information and assistance

What do I have to do if the product is faulty?

SECO S.p.A. offers the following services:

- SECO website: visit <u>http://www.seco.com</u> to receive the latest information on the product. In most of the cases it is possible to find useful information to solve the problem.
- SECO Sales Representative: the Sales Rep can help to determine the exact cause of the problem and search for the best solution.
- SECO Help-Desk: contact SECO Technical Assistance. A technician is at disposal to understand the exact origin of the problem and suggest the correct solution.

E-mail: technical.service@seco.com

Fax (+39) 0575 350210

- Repair center: it is possible to send the faulty product to the SECO Repair Centre. In this case, follow this procedure:
  - o Returned items must be accompanied by a RMA Number. Items sent without the RMA number will be not accepted.
  - Returned items must be shipped in an appropriate package. SECO is not responsible for damages caused by accidental drop, improper usage, or customer neglect.

Note: Please have the following information before asking for technical assistance:

- Name and serial number of the product;
- Description of Customer's peripheral connections;
- Description of Customer's software (operating system, version, application software, etc.);
- A complete description of the problem;
- The exact words of every kind of error message encountered.

## 1.3 RMA number request

To request an RMA number, please visit SECO's web-site. On the home page, please select "RMA Online" and follow the procedure described. An RMA Number will be sent within 1 working day (only for on-line RMA requests).

## 1.4 Safety

This board uses only extremely low voltages.

While handling the board, please use extreme caution to avoid any kind of risk or damages to electronic components.

Always switch the power off, and unplug the power supply unit, before handling the board and/or connecting cables or other boards.

Avoid using metallic components - like paper clips, screws and similar - near the board when connected to a power supply, to avoid short circuits due to unwanted contacts with other board components.

If the board has become wet, never connect it to any external power supply unit or battery.

Check carefully that all cables are correctly connected and that they are not damaged.

### 1.5 Electrostatic Discharges

This board, like any other electronic product, is an electrostatic sensitive device: high voltages caused by static electricity could damage some or all the devices and/or components on-board.

Whenever handling this product, ground yourself through an anti-static wrist strap. Placement of the board on an anti-static surface is also highly recommended.

## 1.6 RoHS compliance

This board is designed using RoHS compliant components and is manufactured on a lead-free production line. It is therefore fully RoHS compliant.



## 1.7 Safety Policy

In order to meet the safety requirements of EN62368-1:2014 standard for Audio/Video, information and communication technology equipment, the HALLEY module shall be:

- used inside a fire enclosure made of non-combustible material or V-1 material (the fire enclosure is not necessary if the maximum power supplied to the module never exceeds 100 W, even in worst-case fault);
- used inside an enclosure; the enclosure is not necessary if the temperature of the parts likely to be touched never exceeds 70 °C;
- installed inside an enclosure compliant with all applicable IEC 62368-1 requirements;

The manufacturer which includes a HALLEY module in his end-user product shall:

- verify the compliance with B.2 and B.3 clauses of the EN62368-1 standard when the module works in its own final operating condition
- Prescribe temperature and humidity range for operating, transport and storage conditions;
- Prescribe to perform maintenance on the module only when it is off and has already cooled down;
- Prescribe that the connections from or to the Module have to be compliant to ES1 requirements;
- The module in its enclosure must be evaluated for temperature and airflow considerations.

## 1.8 Terminology and definitions

| ACPI       | Advanced Configuration and Power Interface, an open industrial standard for the board's devices configuration and power management                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AHCI       | Advanced Host Controller Interface, a standard which defines the operation modes of SATA interface                                                                         |
| API        | Application Program Interface, a set of commands and functions that can be used by programmers for writing software for specific Operating Systems                         |
| AVC        | Advanced Video Coding, a video compression standard, also known as H.264                                                                                                   |
| BIOS       | Basic Input / Output System, the Firmware Interface that initializes the board before the OS starts loading                                                                |
| CAN Bus    | Controller Area network, a protocol designed for in-vehicle communication                                                                                                  |
| DDC        | Display Data Channel, a kind of I2C interface for digital communication between displays and graphics processing units (GPU)                                               |
| DDR        | Double Data Rate, a typology of memory devices which transfer data both on the rising and on the falling edge of the clock.                                                |
| DP         | Display Port, a type of digital video display interface                                                                                                                    |
| eDP        | embedded Display Port, a type of digital video display interface developed especially for internal connections between boards and digital displays                         |
| GBE        | Gigabit Ethernet                                                                                                                                                           |
| Gbps       | Gigabits per second                                                                                                                                                        |
| GND        | Ground                                                                                                                                                                     |
| GPI/O      | General purpose Input/Output                                                                                                                                               |
| HEVC       | High Efficiency Video Coding, a video compression standard, also known as H.265                                                                                            |
| HD Audio   | High Definition Audio, most recent standard for hardware codecs developed by Intel® in 2004 for higher audio quality                                                       |
| HDMI       | High Definition Multimedia Interface, a digital audio and video interface                                                                                                  |
| I2C Bus    | Inter-Integrated Circuit Bus, a simple serial bus consisting only of data and clock line, with multi-master capability                                                     |
| 12S        | Inter-Integrated Circuit Sound, an audio serial bus protocol interface developed by Philips (now NXP) in 1986                                                              |
| JPEG/MJPEG | Joint Photographic Experts Group, standard method for lossy compression of digital images. Motion JPEG is a video compression format                                       |
| LAN        | Local Area Network                                                                                                                                                         |
| LPDDR4     | Low-Power Double Data Rate Synchronous Dynamic Random Access Memory, 4th generation                                                                                        |
| LVDS       | Low Voltage Differential Signalling, a standard for transferring data at very high speed using inexpensive twisted pair copper cables, usually used for video applications |
| Mbps       | Megabits per second                                                                                                                                                        |
| MIPI       | Mobile Industry Processor Interface alliance                                                                                                                               |
| MMC/eMMC   | MultiMedia Card / embedded MMC, a type of memory card, having the same interface as the SD card. The eMMC is the embedded version of                                       |
|            |                                                                                                                                                                            |

|        | the MMC. They are devices that incorporate the flash memories on a single BGA chip.                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPEG2  | Standard for the generic coding of moving pictures and associated audio information                                                                                                      |
| MVC    | Multiview Video Coding, a stereoscopic video coding standard for video compression                                                                                                       |
| N.A.   | Not Applicable                                                                                                                                                                           |
| N.C.   | Not Connected                                                                                                                                                                            |
| OpenCL | Open Computing Language, specifies programming languages for programming different devices and API                                                                                       |
| OpenGL | Open Graphics Library, an Open Source API dedicated to 2D and 3D graphics                                                                                                                |
| OpenVG | Open Vector Graphics, an Open Source API dedicated to hardware accelerated 2D vector graphics                                                                                            |
| OS     | Operating System                                                                                                                                                                         |
| PCI-e  | Peripheral Component Interface Express                                                                                                                                                   |
| PHY    | Abbreviation of Physical, it is the device implementing the Physical Layer of ISO/OSI-7 model for communication systems                                                                  |
| PWM    | Pulse Width Modulation                                                                                                                                                                   |
| PWR    | Power                                                                                                                                                                                    |
| RGMII  | Reduced Gigabit Media Independent Interface, a standard interface between the Ethernet Media Access Control (MAC) and the Physical Layer                                                 |
| (PHY)  |                                                                                                                                                                                          |
| SATA   | Serial Advance Technology Attachment, a differential full duplex serial interface for Hard Disks                                                                                         |
| SD     | Secure Digital, a memory card type                                                                                                                                                       |
| SDIO   | Secure Digital Input/Output, an evolution of the SD standard that allows the use of the same SD interface to drive different Input/Output devices, like cameras, GPS, Tuners and so on.  |
| SGET   | Standardization Group for Embedded Technologies                                                                                                                                          |
| SMARC  | Smart Mobility Architecture, a computer Module standard maintained by the SGET                                                                                                           |
| SM Bus | System Management Bus, a subset of the I2C bus dedicated to communication with devices for system management, like a smart battery and other power supply-related devices.               |
| SOC    | System-on-a-chip                                                                                                                                                                         |
| SPI    | Serial Peripheral Interface, a 4-Wire synchronous full-duplex serial interface which is composed of a master and one or more slaves, individually<br>enabled through a Chip Select line. |
| TBM    | To be measured                                                                                                                                                                           |
| TMDS   | Transition-Minimized Differential Signalling, a method for transmitting high speed serial data, normally used on DVI and HDMI interfaces                                                 |
| UART   | Universal Asynchronous Receiver-Transmitter, is an asynchronous serial interface where data format and transmission speed are configurable                                               |
| UEFI   | Unified Extensible Firmware Interface, a specification defining the interface between the OS and the board's firmware. It is meant to replace the original BIOS interface                |

- USB Universal Serial Bus
- VP8 Open video compression format, a traditional block-based transform coding format
- VP9 Successor to VP8, customized for video greater than 1080p
- WMV9 Series 9 of Windows Media Video, a video compression format inlcuding native support for interlaced video, non-square pixels, and frame interpolation



## 1.9 Reference specifications

Here below it is a list of applicable industry specifications and reference documents.

| Reference                                                | Link                                                                                                                       |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ACPI                                                     | https://uefi.org/specifications                                                                                            |
| AHCI                                                     | http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html                                                             |
| CAN Bus                                                  | http://www.bosch-semiconductors.de/en/ubk_semiconductors/safe/ip_modules/can_literature/can_literature.html                |
| DDC                                                      | http://www.vesa.org                                                                                                        |
| DP, eDP                                                  | http://www.vesa.org                                                                                                        |
| FastEthernet                                             | http://standards.ieee.org/about/get/802/802.3.html                                                                         |
| Gigabit Ethernet                                         | https://standards.ieee.org/standard/802_3-2018.html                                                                        |
| HD Audio                                                 | http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf |
| HDMI                                                     | http://www.hdmi.org/index.aspx                                                                                             |
| I2C                                                      | http://www.nxp.com/documents/other/UM10204_v5.pdf                                                                          |
| I2S                                                      | https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf                                                              |
| Intel <sup>®</sup> Atom <sup>™</sup> Elkhart Lake family | https://ark.intel.com/content/www/us/en/ark/products/codename/80644/Elkhart-lake.html#@Embedded                            |
| LVDS                                                     | http://www.ti.com/ww/en/analog/interface/lvds.shtml and http://www.ti.com/lit/ml/snla187/snla187.pdf                       |
| MIPI                                                     | http://www.mipi.org                                                                                                        |
| MMC/eMMC                                                 | http://www.jedec.org/committees/jc-649                                                                                     |
| OpenGL                                                   | http://www.opengl.org                                                                                                      |
| OpenVG                                                   | http://www.khronos.org/openvg                                                                                              |
| PCI Express                                              | http://www.pcisig.com/specifications/pciexpress                                                                            |
| SATA                                                     | https://www.sata-io.org                                                                                                    |
| SMARC Design Guide 2.0                                   | https://sget.org/wp-content/uploads/2018/09/SMARC_DG_V2.pdf                                                                |
| SMARC Hardware Specification 2.1.1                       | https://sget.org/wp-content/uploads/2020/05/SMARC_V211.pdf                                                                 |
| SD Card Association                                      | https://www.sdcard.org/home                                                                                                |

| SDIO                | https://www.sdcard.org/developers/overview/sdio                                      |
|---------------------|--------------------------------------------------------------------------------------|
| SM Bus              | http://www.smbus.org/specs                                                           |
| TMDS                | http://www.siliconimage.com/technologies/tmds                                        |
| UEFI                | http://www.uefi.org                                                                  |
| USB 2.0 and USB OTG | http://www.usb.org/developers/docs/usb_20_070113.zip                                 |
| USB 3.0             | https://usb.org.10-1-108-210.causewaynow.com/sites/default/files/usb_32_20191024.zip |



## Chapter 2. OVERVIEW

- Introduction
- Technical Specifications
- Electrical Specifications
- Mechanical Specifications
- Supported Operating Systems
- Block Diagram



## 2.1 Introduction

HALLEY is a SMARC Rel. 2.1.1 compliant module based on the Intel<sup>®</sup> Atom<sup>®</sup> x6000E Series and Intel<sup>®</sup> Pentium<sup>®</sup> and Celeron<sup>®</sup> N and J Series processors (formerly Elkhart Lake) for FuSa applications, a series of Dual / Quad SOCs with 64-bit instruction set.

These new family of processors offers different use conditions, such as PC Client, Embedded and Industrial targets and is optimized for usage in vertical applications for IOT including Industrial, Office Automation, Retail, Gaming, Healthcare, Transportation.

New features introduced by Elkhart Lake are, but not limited to the following: Time Sensitive Network (TSN) and Time Coordinate Computing (TCC) for real-time and responsive applications, Scalability and consolidation of temporally deterministic workloads, In band and OOB remote manageability (reboot/power-on/power-off), Platform Trust Technology (PTT), Dynamic Application Loader (DAL) and Secure Guard Extension (SGX), Intel Programmable Service Engine, Intel UHD Graphics, media, and display supporting, Fully Integrated Voltage Regulator (FIVR). Last but not least, this is the first Intel product designed with functional safety capabilities, made available by Intel<sup>®</sup> Safety Island (SI), a functional safety IP integrated into the Elkhart Lake Platform Control Hub (PCH), intended to raise the safety level of the platform with a single source for managing the safety faults of the SOC.

These SOCs embed all the features usually obtained by combination of CPU + platform Controller hubs, all in one single IC, which allows, therefore, the system minimisation and performance optimisation, which is essential for boards with sizes so reduced as for SMARC ("Smart Mobility ARChitecture") form factor, offering the computing abilities of a standard board, with the possibilities of combining with a ready-to-use carrier board like the SECO CSM-B79 or customised carrier board.

The Embedded Memory Controller allows the integration of up to 16GB of LPDDR4 Memory directly soldered onboard with In-Band Error Correction Code supported (Safety related feature) and speed up to 4267MT/s on single rank and 3733MT/s on dual rank.

All SOCs embed an Intel<sup>®</sup> Gen11 UHD Graphics controller with up to 32 Execution Units, which offer high graphical performances, with support for Microsoft<sup>®</sup> DirectX12.1, OpenGL 4.5, OpenCL<sup>™</sup> 1.2, OpenGL ES 3.1, Vulkan 1.1 and HW acceleration for video encoding and decoding of HEVC (H.265), H.264, VP8, VP9, JPEG/MJPEG. It is also possible the HW video decoding only of MPEG2, VC-1.

This embedded GPU is able to drive three independent displays, by using the interfaces available on SMARC connector: one DP++ 1.4, one HMDI 1.4 or DP++ 1.4 and one eDP 1.3 or Dual Channel 18/24bit LVDS (factory alternatives).

Mass Storage capabilities of the board include one external S-ATA Gen3 channel, a standard 4-bit SD interface and one optional eMMC 5.1 Drive soldered on board (Safety related), with up to 128GB capabilities.

Other than the interfaces already discussed previously, on SMARC connector there are the signals necessary for the implementation of 2x GbE, up to 6 ports in USB2.0 only and up to 2 Super Speed (SS) ports (i.e. USB 3.1 Gen2 compliant), 4 x PCI-Express Gen3 lanes, HD and I<sup>2</sup>S Audio interfaces, CAN, I<sup>2</sup>C, SPI and SM buses, up to 14 GPIOs, HS-UART and UART interfaces.

Interfacing to the board comes through a single card edge connector, whose pinout is defined by SMARC specifications Rel.2.1.1. For external interfacing to standard devices, a carrier board with a 230-pin MXM connector is needed. This board will implement all the routing of the interface signals to external standard connectors, as well as integration of other peripherals/devices not already included in HALLEY CPU module.

Please refer to following chapter for a complete list of all peripherals integrated and characteristics.

## 2.2 Technical Specifications

#### Processors

Intel<sup>®</sup> Atom<sup>™</sup> x6000E CPUs certified for FuSa, compliant to IEC 61508 and ISO 13849 requirements for Functional Safety and Safety Integrity Levels:

- Atom<sup>™</sup> x6427FE Quad Core @1.9GHz (no Turbo) 12W TDP w/ IBECC, IHS and TCC, FuSa Certified - Ind. Temp. Range
- Atom<sup>™</sup> x6200FE Dual Core @1.0GHz (no Turbo) 4.5W TDP no Graphics w/ IBECC, IHS and TCC, FuSa Certified- Ind. Temp. Range

Other Intel Atom<sup>™</sup> x6000E, Pentium<sup>®</sup> and Celeron<sup>®</sup> N and J Series CPUs:

- Celeron® J6413 Quad Core @ 1.8GHz (3.0GHZ Turbo) 10W TDP Comm. Temp. Range
- Celeron<sup>®</sup> N6211 Dual Core @1.2GHz (3.0GHZ Turbo) 6.5W TDP Comm. Temp. Range
- Pentium<sup>®</sup> J6426 Quad Core @2.0GHz (3.0GHZ Turbo) 10W TDP Comm. Temp. Range
- Pentium<sup>®</sup> N6415 Quad Core @1.2GHz (3.0GHZ Turbo) 6.5W TDP Comm. Temp. Range
- Atom<sup>™</sup> x6211E Dual Core @1.3GHz (3.0GHZ Turbo) 6W TDP w/ IBECC and IHS -Ind. Temp. Range
- Atom<sup>™</sup> x6413E Quad Core @1.5GHz (3.0GHZ Turbo) 9W TDP w/ IBECC and IHS -Ind. Temp. Range
- Atom™ x6425E Quad Core @2.0GHz (3.0GHZ Turbo) 12W TDP w/ IBECC and IHS
   Ind. Temp. Range
- Atom<sup>™</sup> x6212RE Dual Core @1.2GHz (no Turbo) 6W TDP w/ IBECC, IHS and TCC
   Ind. Temp. Range
- Atom<sup>™</sup> x6414RE Quad Core @1.5GHz (no Turbo) 9W TDP w/ IBECC, IHS and TCC
   Ind. Temp. Range
- Atom<sup>™</sup> x6425RE Quad Core @1.9GHz (no Turbo) 12W TDP w/ IBECC, IHS and TCC - Ind. Temp. Range

(\*) IHS: Integrated Heatspreader; TCC: Time Coordinated Computing

#### Memory

32-bit LPDDR4x Soldered Down Memory

HALLEY

Up to 16GB Quad Channel with In-Band Error Correction Code (IBECC, Safety Related feature) supported 4GB Dual Channel, 8GB or 16GB Quad Channel

Speed:4267MT/s single rank (1GB/2GB/4GB/8GB), 3733MT/s dual rank (16GB)

#### Graphics

Up to 3 independent displays Integrated Gen11 UHD Graphics controller with up to 32 EU 4K HW decoding and encoding of HEVC (H.265), H.264, VP8/ VP9, WMV9/VC1 (decoding only) DirectX 12.1, OpenGL ES 3.1, OpenGL 4.5, OpenCL <sup>™</sup> 1.2, Vulkan 1.0

#### Video Interfaces

eDP 1.3 or Dual Channel 18/24bit LVDS interface (factory options)  $2 \times DP_{++} 1.4$  or  $1 \times DP_{++} 1.4$  and  $1 \times HDMI 1.4$  interfaces

#### Video Resolution

Up to 4096 x 2160 @60Hz

#### Mass Storage

1 x external S-ATA Gen3 Channel

SDIO interface

Optional eMMC 5.1 drive soldered on-board (Safety Related)

PCI Express

Up to 4 x PCI-e Gen3 Lanes

#### Networking

2x Gigabit Ethernet PHY with precision clock synchronization and synchronous Ethernet clock output for IEEE 1588 (Safety Related – Black channel). Optional SERDES (SGMII) Interface for additional third Gigabit Ethernet (factory option, alternative to fourth PCI-e lane)

#### USB

6 x USB 2.0 Host Ports 2 x USB 3.1 Gen2 Ports

#### Audio

HD Audio interface

#### Serial ports

2 x HS-UARTs (Safety Related) 2 x UARTs

#### CAN Bus

2 x CAN interfaces

#### Other Interfaces

Up to 14x GPIOs SM Bus Power Management Signals I2C Bus 1x SPI interface for boot 1x General Purpose SPI or eSPI (Factory Alternatives)

#### Functional Safety Features

FuSa Interface signals for IEC 61508 and ISO 13849

Power supply voltage:  $+5V_{DC}$  and  $+3.3V_{RTC}$ 

#### Operating System

Microsoft<sup>®</sup> Windows 10 Enterprise (64 bit) Linux Yocto 64-bit Operating temperature:

Commercial version  $0^{\circ}C \div +60^{\circ}C^{**}$ . Industrial version  $-40^{\circ}C \div +85^{\circ}C^{**}$ .

Dimensions: 50 x82 mm (1.97" x 3.23")

\*\* Measured at any point of SECO standard heatspreader for this product, during any and all times (including start-up). Actual temperature will widely depend on application, enclosure and/or environment. Upon customer to consider application-specific cooling solutions for the final system to keep the heatspreader temperature in the range indicated. Please also check paragraph 5.1



## 2.3 Electrical Specifications

According to SMARC specifications, the HALLEY module needs to be supplied only with an external +5V<sub>DC</sub> power supply.

For Real Time Clock working and CMOS memory data retention, it is also needed a backup battery voltage. All these voltages are supplied directly through card edge fingers (see connector's pinout). All remaining voltages needed for board's working are generated internally from +5V<sub>DC</sub> power rail.

#### 2.3.1 Power Consumption

HALLEY module, like all SMARC modules, needs a carrier board for its normal working. All connections with the external world come through this carrier board, which provide also the required voltage to the board, deriving it from its power supply source. Anyway, it has been possible to measure power consumption directly on VDD\_IN power rail (5V<sub>DC</sub>) that supplies the board. Power consumption must be intended as average value (30 seconds acquisition).

| Configur                                                 |                                                                                                                            |       |        |                                                                                                                             |        |       |                                                                                                                           | uration |        |                                                                                                                                  |        |       |        |       |        |       |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------------------------------------------------------------------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|
| Status                                                   | Intel Atom <sup>™</sup> x6425E<br>16GB LPDDR4<br>128GB eMMC<br>4 x PCI-e<br>LVDS and 2x DP++<br>TPM 2.0<br>Comm Temp Range |       |        | Intel Pentium <sup>®</sup> J6425<br>8GB LPDDR4<br>128GB eMMC<br>4 x PCI-e<br>LVDS and 2x DP++<br>TPM 2.0<br>Comm Temp Range |        |       | Intel Atom <sup>™</sup> x6425RE<br>16GB LPDDR4<br>128GB eMMC<br>4 x PCI-e<br>eDP and 2x DP++<br>TPM 2.0<br>Ind Temp Range |         |        | Intel Atom <sup>™</sup> x6427FE<br>8GB LPDDR4<br>64GB eMMC<br>4 x PCI-e<br>LVDS and 2x DP++<br>TPM 2.0<br>FuSa<br>Ind Temp Range |        |       |        |       |        |       |
|                                                          | Avg V                                                                                                                      | alue  | Peak V | /alue                                                                                                                       | Avg V  | alue  | Peak V                                                                                                                    | /alue   | Avg V  | alue                                                                                                                             | Peak \ | /alue | Avg V  | alue  | Peak V | /alue |
| ldle – (Win10) –<br>power saving<br>configuration        | 3.5W                                                                                                                       | 0.7A  | 6.22W  | 1.24A                                                                                                                       | 2.46W  | 0.49A | 6.79W                                                                                                                     | 1.35A   | 6W     | 1.2A                                                                                                                             | 6.3W   | 1.26A | 6.97W  | 1.39A | 9.71W  | 1.94A |
| OS Boot – (Win10)                                        | 5.68W                                                                                                                      | 1.13A | 12.63W | 2.52A                                                                                                                       | 6.28W  | 1.25A | 9.41W                                                                                                                     | 1.88A   | 7.85W  | 1.57A                                                                                                                            | 13.6W  | 2.72A | 6.83W  | 1.36A | 12.61W | 2.52A |
| Video reproduction<br>@1080p                             | 4.34W                                                                                                                      | 0.54A | 9.96W  | 2A                                                                                                                          | 4.27W  | 0.85A | 11W                                                                                                                       | 2.2A    | 6.53W  | 1.31A                                                                                                                            | 9.12W  | 1.82A | 7.38W  | 1.47A | 9.49W  | 1.9A  |
| Video reproduction<br>4K                                 | 6.71W                                                                                                                      | 1.34A | 10.64W | 2.12A                                                                                                                       | 6W     | 1.2A  | 11.83W                                                                                                                    | 2.36A   | 7.76W  | 1.55A                                                                                                                            | 10.47W | 2.09A | 7.76W  | 1.55A | 10.47A | 2.09A |
| Intel PTU (package<br>power limit and<br>TURBO Enabled)  | 16.12W                                                                                                                     | 3.22A | 19.96W | 3.98A                                                                                                                       | 11.22W | 2.24A | 16.29W                                                                                                                    | 3.25A   | 13.68W | 2.73A                                                                                                                            | 14.52W | 2.9A  | 13.39W | 2.68A | 14.03W | 2.8A  |
| Intel PTU (without<br>power limits and<br>TURBO Enabled) | 22.91W                                                                                                                     | 4.58A | 24.2W  | 4.83A                                                                                                                       | 17.36W | 3.47A | 18.92W                                                                                                                    | 3.98A   | 14.46W | 2.89A                                                                                                                            | 15.74W | 3.15A | 14.39W | 2.87A | 15.6W  | 3.12A |



Independently by the SOC mounted onboard, the following power consumptions are common to all boards:

| Battery Backup power consumption: | 3.11µA |
|-----------------------------------|--------|
| Soft-Off State power consumption: | 174mA  |
| Suspend State power consumption:  | 176mA  |

#### 2.3.2 Power Rails meanings

In all the tables contained in this manual, Power rails are named with the following meaning:

VDD\_IN: Module power input voltage. +5V voltage directly coming from the card edge connector, internally named as 5V\_DSW.

VDD\_RTC: Low current RTC circuit backup power. 3V coin cell voltage coming from the edge card for supplying the RTC clock on the Elkhart Lake SOCs.

+3.3V\_DSW: +3.3 Deep Sleep Well, derived internally from 5V\_DSW

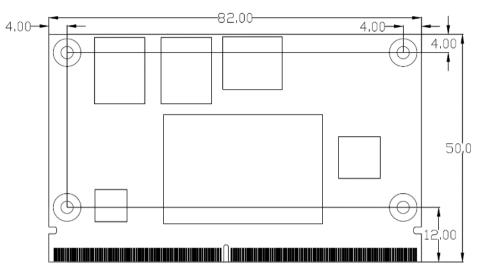
+3.3V\_RUN: +3.3 Switched voltage, derived internally from +3.3V\_DSW

+3.3V\_ALW: +3.3 Always-on voltage, derived internally from +3.3V\_DSW

+1.8V\_ALW: +1.8 Always-on voltage, derived internally from 5V\_DSW

+1.8V\_RUN: +1.8 Switched voltage, derived internally from +1.8V\_ALW

+1.8V\_DSW: +1.8 Deep sleep well, derived internally from +3.3V\_DSW


## 2.4 Mechanical Specifications

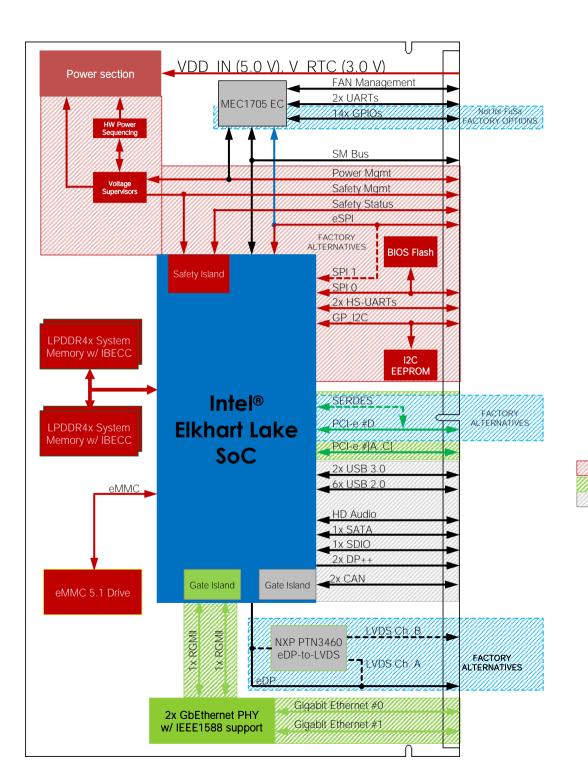
According to SMARC<sup>®</sup> specifications, the board dimensions are: 50 x 82 mm (1.97" x  $^{-2}$  3.23") including the pin numbering and edge finger pattern.

Printed circuit of the board is made of twelve layers, some of them are ground planes, for disturbance rejection.

The MXM connector accommodates various connector heights for different carrier board applications needs.

When using different connector heights, please consider that, according to SMARC specifications, components placed on bottom side of the module will have a maximum height of 1.3mm. Keep this value in mind when choosing the MXM connector's height, if there is the need to place components on the carrier board in the area below the SMARC module.




### 2.5 Supported Operating Systems

HALLEY module supports the following operating systems:

- Microsoft<sup>®</sup> Windows 10 Enterprise (64 bit)
- Linux Yocto 64-bit

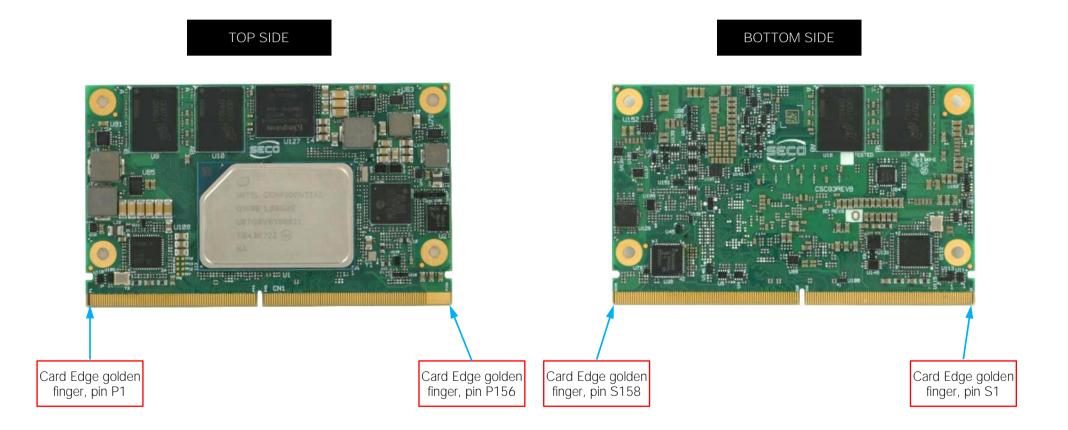
SECO will offer the BSP (Board Support Package) for these O.Ss, to reduce at minimum SW development of the board, supplying all the drivers and libraries needed for use both with the SMARC board and the Carrier Board, assuming that the Carrier Board is designed following SECO SMARC Design Guide, with the same IC's. For further details, please visit <a href="https://www.seco.com">https://www.seco.com</a>.

## 2.6 Block Diagram





## Chapter 3. CONNECTORS


- Introduction
- Connectors description





## 3.1 Introduction

According to SMARC specifications, all interfaces to the board are available through a single card edge connector.



## 3.2 Connectors description

#### 3.2.1 SMARC Connector

According to SMARC Rel 2.1 specification, all interface signals are reported on the card edge connector, which is a 314-pin Card Edge that can be inserted into standard low profile 314 pin 0.5mm right pitch angle connector that was originally defined for use with MXM3 graphics cards.

Not all signals contemplated in the SMARC Rel 2.1 are implemented on card edge connector, therefore, please refer to the following table for a list of effective signals reported on the card edge connector.

For accurate signals description, please consult the following paragraphs.

| SMARC Golden Finger Connector – CN1 |      |            |         |         |               |           |              |
|-------------------------------------|------|------------|---------|---------|---------------|-----------|--------------|
|                                     | TO   | P SIDE     |         |         | BC            | TTOM SIDE |              |
| SIGNAL GROUP                        | Туре | Pin name   | Pin nr. | Pin nr. | Pin name      | Туре      | SIGNAL GROUP |
|                                     |      |            |         | S1      | PROCHOT       | I/O       | FUSA         |
| MANAGEMENT                          | Ι    | SMB_ALERT# | P1      | S2      | FUSA_PWRFAIL# | I/O       | FUSA         |
|                                     |      | GND        | P2      | S3      | GND           |           |              |
|                                     |      | N.C.       | P3      | S4      | CHXPMICEN     | I         | FUSA         |
|                                     |      | N.C        | P4      | S5      | N.C.          |           |              |
| GBE                                 | I/O  | GBE1_SDP   | P5      | S6      | N.C.          |           |              |
| GBE                                 | I/O  | GBE0_SDP   | P6      | S7      | N.C.          |           |              |
|                                     |      | N.C.       | P7      | S8      | N.C.          |           |              |
|                                     |      | N.C        | P8      | S9      | N.C.          |           |              |
|                                     |      | GND        | P9      | S10     | GND           |           |              |
|                                     |      | N.C.       | P10     | S11     | N.C.          |           |              |
|                                     |      | N.C        | P11     | S12     | N.C.          |           |              |
|                                     |      | GND        | P12     | S13     | GND           |           |              |
|                                     |      | N.C.       | P13     | S14     | N.C.          |           |              |
|                                     |      | N.C        | P14     | S15     | N.C.          |           |              |
|                                     |      | GND        | P15     | S16     | GND           |           |              |
|                                     |      | N.C.       | P16     | S17     | GBE1_MDI0+    | I/O       | GBE          |



|                 |     | N.C            | P17 | S18 | GBE1_MDI0-                   | I/O | GBE            |
|-----------------|-----|----------------|-----|-----|------------------------------|-----|----------------|
|                 |     | GND            | P18 | S19 | GBE1_LINK100#                | 0   |                |
| GBE             | I/O | GBE0_MDI3-     | P19 | S20 | GBE1_MDI1+                   | I/O | GBE            |
| GBE             | I/O | GBE0_MDI3+     | P20 | S21 | GBE1_MDI1-                   | I/O | GBE            |
| GBE             | 0   | GBE0_LINK100#  | P21 | S22 | GBE1_LINK1000#               | 0   |                |
| GBE             | 0   | GBE0_LINK1000# | P22 | S23 | GBE1_MDI2+                   | I/O | GBE            |
| GBE             | I/O | GBE0_MDI2-     | P23 | S24 | GBE1_MDI2-                   | I/O | GBE            |
| GBE             | I/O | GBE0_MDI2+     | P24 | S25 | GND                          |     |                |
| GBE             | 0   | GBE0_LINK_ACT# | P25 | S26 | GBE1_MDI3-                   | I/O | GBE            |
| GBE             | I/O | GBE0_MDI1-     | P26 | S27 | GBE1_MDI3+                   | I/O | GBE            |
| GBE             | I/O | GBE0_MDI1+     | P27 | S28 | N.C.                         |     |                |
|                 |     | N.C.           | P28 | S29 | SERDES_0_TX+ /<br>PCIE_D_TX+ | 0   | SERDES / PCI-e |
| GBE             | I/O | GBE0_MDI0-     | P29 | S30 | SERDES_0_TX- /<br>PCIE_D_TX- | 0   | SERDES / PCI-e |
| GBE             | I/O | GBE0_MDI0+     | P30 | S31 | GBE1_LINK_ACT#               | 0   | GBE            |
|                 |     | N.C.           | P31 | S32 | SERDES_0_RX+ /<br>PCIE_D_RX+ | I   | SERDES / PCI-e |
|                 |     | GND            | P32 | S33 | SERDES_0_RX- /<br>PCIE_D_RX- | I   | SERDES / PCI-e |
| SDIO_CARD       |     | SDIO_WP        | P33 | S34 | GND                          |     |                |
| SDIO_CARD       | I/O | SDIO_CMD       | P34 | S35 | USB4+                        | I/O | USB            |
| SDIO_CARD       | Ι   | SDIO_CD#       | P35 | S36 | USB4-                        | I/O | USB            |
| SDIO_CARD       | 0   | SDIO_CK        | P36 | S37 | N.C.                         |     |                |
| SDIO_CARD       | 0   | SDIO_PWR_EN    | P37 | S38 | AUDIO_MCK                    | 0   | AUDIO          |
|                 |     | GND            | P38 | S39 | I2SO_LRCK                    | I/O | AUDIO          |
| SDIO_CARD       | I/O | SDIO_DO        | P39 | S40 | I2S0_SDOUT                   | 0   | AUDIO          |
| SDIO_CARD       | I/O | SDIO_D1        | P40 | S41 | I2S0_SDIN                    | I   | AUDIO          |
| SDIO_CARD       | I/O | SDIO_D2        | P41 | S42 | I2S0_CK                      | I/O | AUDIO          |
| SDIO_CARD       | I/O | SDIO_D3        | P42 | S43 | ESPI_ALERTO#                 | I   | ESPI INTERFACE |
| SPI 0 INTERFACE | 0   | SPI0_CS0#      | P43 | S44 | ESPI_ALERT1#                 | Ι   | ESPI INTERFACE |

| SPI O INTERFACEQSPIQ_CKP44S46MDIO_COLKQSLRDESSPIO INTERFACEISPIQ_DONP46S47GNDW/OSERDESSPIO INTERFACEISPIQ_DONP46S47GNDW/OIZCSATAQSATAP47S48IZC_GP_CKV/OIZCSATAQSATA,IX+P48S0VIDA_SYNCV/OVIDAUIOSATAQSATA,IX+P48S51HDA_SDOQHDA JUDIOSATAISATA,IX+P51S52HDA_CKOHDA JUDIOSATAISATA,RX+P51S53HDA_CKOSATASATAISATA,RX+P53S54SATA_ACT#OSATASPI 1/SO/FENICESE/CSOFP54S55USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S56USB5U/OSPIINTEFACESPI 1/SO/FENICESE/CSOFP54S56USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S56USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S57USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S56USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S57USB5U/OU/OUSBSPI 1/SO/FENICESE/CSOFP54S57USB5U/OU/OU/OSPI 1/SO/FENICESE/CSOFP51S56USB5U/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |     |                      |     |     |             |     |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|----------------------|-----|-----|-------------|-----|----------------|
| SPI 0 INTERFACE         O         SPD DO         P46         S47         GND           SATA         O         SATA_TX+         P47         S48         !2C_GF_CK         I/O         !2C           SATA         O         SATA_TX+         P48         S49         !2C_GP_DAT         V/O         !2C           SATA         O         SATA_TX-         P48         S49         !DA_SYNC         V/O         !DAUDIO           SATA         O         SATA_TX-         P48         S50         !HDA_SYNC         V/O         !HDAUDIO           SATA         I         SATA_TX+         P51         S51         !HDA_SDO         O         !HDAUDIO           SATA         I         SATA_TX+         P51         S52         !HDA_SDI         I         HDAUDIO           SATA         I         SATA_TX+         P52         S53         !HDA_SDI         I         HDAUDIO           SATA         I         SATA_TX+         P52         S55         !S51_D_C2#         !O         !SATA           SPI 1 / cSPIINTERFACE         O         SPI_D_CS0#/ESPLCS0#         P54         S55         !S51_D_C2#         !O         SPIINTERFACE           SPI 1 / cSPIINTERFACE         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPI 0 INTERFACE        | 0   | SPIO_CK              | P44 | S45 | MDIO_CLK    | 0   | SERDES         |
| ATAGNDP47S48I2C_GP_CKV0I2CSATAOSATA_TX+P48S49I2C_GP_DATV0I2CSATAOSATA_TX+P49S50HDA_SYNCV0HDAUDIOSATAISATA_RX+P50S51HDA_SDOOHDAUDIOSATAISATA_RX+P51S52HDA_SDOOHDAUDIOSATAISATA_RX+P51S52HDA_CKOSATASPI 1/ SPIINTERFACEISATA_RX+P52S53HDA_CKOSATASPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_O_2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOSSFSPI 1/ SPIINTERFACEVOSPIINTERFACEP56S57ESPI_Q2VOSSFSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P55S56FSPI_Q2VOVSSSPI 1/ SPIINTERFACESPII_CS/#/FSPI_CS/#P56S57ESPI_Q2VOVSSSPI 1/ SPI_DO/TSPI_O_1P57S58ESPI_STVO <td>SPI 0 INTERFACE</td> <td> </td> <td>SPIO_DIN</td> <td>P45</td> <td>S46</td> <td>MDIO_DAT</td> <td>I/O</td> <td>SERDES</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPI 0 INTERFACE        |     | SPIO_DIN             | P45 | S46 | MDIO_DAT    | I/O | SERDES         |
| SATA0SATA_TX+P48S49I2C_GP_DATI/0I2CSATA0SATA_TX-P49S50HDA_SYNCI/0HD AUDIOSATACNDP50S51HDA_SDOOHD AUDIOSATA1SATA_RX+P50S52HDA_SDIIHD AUDIOSATA1SATA_RX+P52S53HDA_CKOHD AUDIOSTSATA_RX+P52S54SATA_CT#OSATASPI1/cSPIINTERFACE0SPI1_CSO#/SSPI.CSU#P54S55USB5_EN_OC#I/OUSBSPI1/cSPIINTERFACE0SPI1_CSC#/SSPI.CSU#P54S56ESPLO_2VOUSBSPI1/cSPIINTERFACE0SPI1_CSU#/SSPI.CSU#P56S56ESPLO_2VOUSBSPI1/cSPIINTERFACE0SPI1_CK/ESPI.CSU#P56S56ESPLO_2VOUSBSPI1/cSPIINTERFACE0SPI1_CK/ESPI.CSU#P57S58ESPLRESET#OeSPIINTERFACESPI1/cSPIINTERFACE10SPI1_DIV/ESPI.D_OP58S59USB5+VOUSBSPI1/cSPIINTERFACE100SS0P59S60USB5+VOUSBSPI1/cSPIINTERFACE100USB0_FN_OC#P61S62USB3_SSTX+OUSBUSBVOUSB0_FN_OC#P64S64GNDUSBUSBUSBUSBUSBVOUSB1_EN_OC#P64S64USB3_SSTX+IUSBUSBUSB <td< td=""><td>SPI 0 INTERFACE</td><td>0</td><td>SPIO_DO</td><td>P46</td><td>S47</td><td>GND</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPI 0 INTERFACE        | 0   | SPIO_DO              | P46 | S47 | GND         |     |                |
| SATA<br>C<br>MAO<br>MASATA_TX-<br>MAP49S50HDA_SYNCI/OHD AUDIOSATAI<br>MDSATA_RX+P50S51HDA_SDOOHD AUDIOSATAISATA_RX+P51S52HDA_CKOHD AUDIOSATAISATA_RX-P50S54SATA_CT#OSATASPI1STA_RX-P53S54SATA_CT#OSATASPI1/sSPINTERFACEOSPI_CS0#/ESPLCS0#P54S56ESPLO_2VOvSPINTERFACESPI1/sSPINTERFACESPI1_CS1#/SSPICS1#P55S56ESPLO_3VOeSPINTERFACESPI1/sSPINTERFACEVOSPINTERFACES70S58ESPLRSET#VOeSPINTERFACESPI1/sSPINTERFACEVOSPINTERFACEP59S58ESPLRSET#VOUSBSPI1/sSPINTERFACEVOSPINTERFACEP59S50USB5+VOUSBSPI1/sSPINTERFACEVOSPINTERFACEP59S60USB5+VOUSBSPI1/sSPINTERFACEVOSS0+P59S60USB5+VOUSBSPI1/sSPINTERFACEVOUSB0+P60S61GNDUSBUSBUSBVOUSB0+P60S61USB3_SSTX+OUSBUSBUSBVOUSB1_P64S67GNDUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |     | GND                  | P47 | S48 | I2C_GP_CK   | I/O | 12C            |
| GND         P50         S51         HDA_SDO         O         HD AUDIO           SATA         I         SATA_RX+         P51         S52         HDA_SDI         I         HD AUDIO           SATA         I         SATA_RX-         P52         S53         HDA_CK         O         HD AUDIO           SPI1 / eSPIINTERFACE         O         SATA_RX-         P52         S53         HDA_CK         O         SATA           SPI1 / eSPIINTERFACE         O         SATA_RX-         P52         S56         USB5_EN_OC#         VO         USB           SPI1 / eSPIINTERFACE         O         SPI1_CSO#/ESPI_CS1#         P55         S56         ESP_LIO_2         VO         ESPIINTERFACE           SPI1 / eSPIINTERFACE         VO         SPII_DIN / ESPI_O_1         P57         S58         ESP_LRESET#         O         eSPIINTERFACE           SPI1 / eSPIINTERFACE         VO         SPII_DO / FSP_O_0         P58         S59         USB5-         VO         USB           USB         GND         USB0         S91         USB5-         VO         USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SATA                   | 0   | SATA_TX+             | P48 | S49 | I2C_GP_DAT  | I/O | 12C            |
| SATAISATA_RX+P51S52HDA_SDIIHD AUDOSATAISATA_RX-P52S53HDA_CKOHD AUDOSPICNDP53S54SATA_ACT#OSATASPI1/CS0#/ESPI_CS0#P54S56USB SE_N_OC#VOeSPIINTERFACESPI1/SD1/TERFACEOSPI1_CS1#/ESPL_CS1#P55S56ESPL_O_2VOeSPIINTERFACESPI1/SD1/TERFACEOSPI1_CS1#/ESPL_CS1#P56S57ESPL_O_3VOeSPIINTERFACESPI1/SD1/TERFACEVOSPII_DO / FSPL_O_1P57S58ESPL_RESET#OeSPIINTERFACESPI1/SD1/TERFACEVOSPI_DO / FSPL_O_0P58S59USB5-NOUSBSPI1/SD1/TERFACEVOSPI_DO / FSPL_O_0P58S59USB5-NVOUSBSPI1/SD1/TERFACEVOSPI_DO / FSPL_O_0P58S59USB5-NVOUSBSPI1/SD1/TERFACEVOSPI_DO / FSPL_O_0P58S59USB5-NVOUSBUSBVOUSB0-NP59S61USB5-NVOUSBUSBUSBVOUSB0-NP64S62USB_SSTX+0OUSBUSBUSBVOUSB1-NP64S64USB3_SSRX+1IUSBUSBUSBVOUSB1-NP64S64USB3_SSRX+1IUSBUSBUSBVOUSB1_NP64S64USB3_SSRX+1IUSBUSB<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SATA                   | 0   | SATA_TX-             | P49 | S50 | HDA_SYNC    | I/O | HD AUDIO       |
| SATA         I         SATA_RX-         P52         S53         HDA_CK         O         HD AUDIO           GND         P53         S54         SATA_ACT#         O         SATA           SPI1 / eSPIINTERFACE         O         SPI1_CSO#/ESPI_CSO#         P54         S55         USB5_EN_OC#         I/O         USB           SPI1 / eSPIINTERFACE         O         SPI1_CSO#/ESPI_CS1#         P55         S56         ESPI_O_2         I/O         eSPIINTERFACE           SPI1 / eSPIINTERFACE         VO         SPII_CK / ESPI_CS1#         P56         S57         ESPI_O_3         V/O         eSPIINTERFACE           SPI1 / eSPIINTERFACE         VO         SPII_DN / ESPI_O_1         P57         S58         ESPI_RESET#         O         eSPIINTERFACE           SPI1 / eSPIINTERFACE         VO         SPII_DO / ESPI_O_0         P58         S59         USB5-         V/O         USB           SPI1 / eSPIINTERFACE         VO         SBI         SS9         USB5-         V/O         USB           USB         VIO         USB0_EN_OC#         P60         S61         GND         USB         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |     | GND                  | P50 | S51 | HDA_SDO     | 0   | HD AUDIO       |
| Index         P53         S54         SATA_ACT#         O         SATA           SP11/oSPIINTERFACE         O         SP11_CSO#/ESPL_CSO#         P54         S55         USB5_EN_OC#         VO         USB           SP11/oSPIINTERFACE         SP11_CSO#/ESPL_CSO#         P54         S56         ESPL_O_2         VO         eSPIINTERFACE           SP11/oSPIINTERFACE         O         SP11_CK / ESPL_OL         P56         S57         ESPL_O_3         VO         eSPIINTERFACE           SP11/oSPIINTERFACE         VO         SP11_DIN / ESPL_O_1         P57         S58         ESPL_RESET#         O         eSPIINTERFACE           SP11_oSPIINTERFACE         VO         SP11_DO / ESPL_O_0         P58         S59         USB5_EN_OC         VO         USB           SP11_OSPINTERFACE         VO         USB0         P59         S60         USB5_EN_OC         VO         USB           USB         VO         USB0+         P61         S62         USB3_SSTX+         O         USB         USB           USB         VO         USB0_EN_OC#         P62         S64         USB3_SSTX+         I         USB         USB           USB         VO         USB1_EN_OC#         P64         S65         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SATA                   |     | SATA_RX+             | P51 | S52 | HDA_SDI     |     | HD AUDIO       |
| SP1 1 / eSP1 INTERFACE0SP11_CS0#/ESP1_CS0#P54S55USB5_EN_OC#V/OUSBSP1 1 / eSP1 INTERFACESP11_CS1#/ESP1_CS1#P55S56ESP1_0_2V/OeSP1 INTERFACESP1 1 / eSP1 INTERFACEOSP11_CK / ESP1_CKP56S57ESP1_0_3V/OeSP1 INTERFACESP1 1 / eSP1 INTERFACEV/OSP1_DIN / ESP1_0_1P57S58ESP_RESET#OeSP1 INTERFACESP1 1 / eSP1 INTERFACEV/OSP1_DIN / ESP1_0_0P58S59USB5+V/OUSBSP1 1 / eSP1 INTERFACEV/OSB1P59S60USB5+V/OUSBUSBUSBV/OUSB0NCS60USB3_SSTX+OUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSBUSB<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SATA                   | 1   | SATA_RX-             | P52 | S53 | HDA_CK      | 0   | HD AUDIO       |
| SP11 / eSP1 iNTERFACESP11 / eS1 #/ESP1_CS1#P55S56ESP1_0_2V/OeSP1 iNTERFACESP11 / eSP1 iNTERFACEVOSP11_CK / ESP1_CKP56S57ESP1_0_3V/OeSP1 iNTERFACESP11 / eSP1 iNTERFACEVOSP11_DIN / ESP1_0_0P58S59USB5+V/OUSBSP11 / eSP1 iNTERFACEVOSP1_0_0 / ESP1_0_0_0P58S50USB5+V/OUSBUSBVOUSB0+P60S61GNDUSBUSBUSBUSBVOUSB0+P60S61GNDUSBUSBUSBVOUSB0+P60S61GNDUSBUSBUSBVOUSB0+P60S61GNDUSBUSBUSBVOUSB0+P60S64USB_SSTX+OUSBUSBVOUSB0_EN_OC#P62S63USB3_SSTX+OUSBUSBVOUSB1+P63S64GNDUSBUSBUSBVOUSB1+P64S64USB3_SSTX+IUSBUSBVOUSB1-P66S67GNDUSBUSBUSBVOUSB1-P67S68USB3_SSTX+IUSBUSBVOUSB1-P68S69USB3_SV/OUSBUSBVOUSB2+P69S64USB3_STX+IUSBUSBVOUSB2+P69S64USB3_STX+IUSBUSBVOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |     | GND                  | P53 | S54 | SATA_ACT#   | 0   | SATA           |
| SP1 1 / eSPI INTERFACEOSP11_CK / ESPI_CKP56S57ESPI_0_3I/OeSPI INTERFACESP1 1 / eSPI INTERFACEI/OSP11_DIN / ESPI_IO_1P57S58ESPI_RESET#OeSPI INTERFACESP1 1 / eSPI INTERFACEI/OSP11_DO / ESPI_IO_0P58S59USB5+I/OUSBSP1 1 / eSPI INTERFACEI/OSP11_DO / ESPI_IO_0P58S59USB5+I/OUSBUSBI/OUSB0+P59S60USB5-I/OUSBUSBI/OUSB0+P60S61GNDUSBUSBI/OUSB0-EN_OC#P61S62USB3_SSTX+OUSBUSBI/OUSB0_EN_OC#P63S64GNDUSBUSBUSBI/OUSB1+P63S64USB_SSTX+IUSBUSBI/OUSB1+P64S65USB_SSTX+IUSBUSBI/OUSB1+P65S64USB_SSTX+IUSBUSBI/OUSB1-EN_OC#P67S68USB3_STX+IUSBUSBI/OUSB1_EN_OC#P67S64USB3_I/OUSBUSBI/OUSB2_EN_OC#P67S64USB3_I/OUSBUSBI/OUSB2_STX+I/OUSBUSBI/OUSBUSBI/OUSB2_EN_OC#P69S70GNDUSBUSBI/OUSB2_EN_OC#P71S72USB2_STX+OUSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPI 1 / eSPI INTERFACE | 0   | SPI1_CS0#/ESPI_CS0#  | P54 | S55 | USB5_EN_OC# | I/O | USB            |
| SPI 1 / eSPI INTERFACE       I/O       SPI1_DIN / ESPI_O_1       P57       S58       ESPI_RESET#       O       eSPI INTERFACE         SPI 1 / eSPI INTERFACE       I/O       SPI1_DO / ESPI_O_0       P58       S59       USB5+       I/O       USB         USB       GND       P59       S60       USB5-       I/O       USB         USB       I/O       USB0+       P60       S61       GND       USB         USB       I/O       USB0-       P61       S62       USB3_SSTX+       O       USB         USB       I/O       USB0_EN_OC#       P62       S63       USB3_SSTX+       O       USB         USB       I/O       USB0_EN_OC#       P62       S64       GND       USB       USB         USB       I/O       USB0_EN_OC#       P62       S64       USB3_SSTX+       O       USB         USB       I/O       USB1_EN_OC#       P63       S64       USB3_SSTX+       I       USB         USB       I/O       USB1+       P65       S66       USB3_SSTX+       I       USB         USB       I/O       USB1_EN_OC#       P67       S68       USB3_SSTX+       I       USB         USB <td>SPI 1 / eSPI INTERFACE</td> <td></td> <td>SPI1_CS1#/ESPI_CS1#</td> <td>P55</td> <td>S56</td> <td>ESPI_IO_2</td> <td>I/O</td> <td>eSPI INTERFACE</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPI 1 / eSPI INTERFACE |     | SPI1_CS1#/ESPI_CS1#  | P55 | S56 | ESPI_IO_2   | I/O | eSPI INTERFACE |
| SPI1 / eSPI INTERFACE         I/O         SPI1_DO / ESPI_O         P58         S59         USB.+         I/O         USB           USB         GND         P59         S60         USB5-         I/O         USB           USB         I/O         USB0+         P60         S61         GND         USB           USB         I/O         USB0-         P61         S62         USB_SSTX+         O         USB           USB         I/O         USB0_EN_OC#         P62         S63         USB_SSTX+         O         USB           USB         I/O         USB0_EN_OC#         P63         S64         GND         USB         USB         USB         USB         USB         USB         USB         I/O         USB         USB         USB         USB         USB         USB         USB         USB         S64         GND         USB         USB         USB         USB         USB         USB         I/O         USB         USB         I/O         USB         USB         USB         S64         USB3_SSRX+         I         USB         USB         USB         USB         USB         USB         USB         S64         USB3_SSRX+         I         USB <td>SPI 1 / eSPI INTERFACE</td> <td>0</td> <td>SPI1_CK / ESPI_CK</td> <td>P56</td> <td>S57</td> <td>ESPI_IO_3</td> <td>I/O</td> <td>eSPI INTERFACE</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPI 1 / eSPI INTERFACE | 0   | SPI1_CK / ESPI_CK    | P56 | S57 | ESPI_IO_3   | I/O | eSPI INTERFACE |
| IndexIndexIndexIndexIndexIndexIndexIndexUSBI/OUSB0+P60S61GNDUSB3_SSTX+OUSBUSBI/OUSB0_EN_OC#P62S63USB3_SSTX+OUSBUSBI/OUSB0_EN_OC#P62S64GNDUSBUSBI/OUSB0_EN_OC#P63S64GNDUSBUSBI/OUSB1_EN_OC#P64S65USB3_SSRX+IUSBUSBI/OUSB1+P64S64USB3_SSRX+IUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX+I/OUSBUSBI/OUSB2_SSRXI/OUSBI/OUSBI/OUSBUSBI/OUSB2_SSRXI/O<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SPI 1 / eSPI INTERFACE | I/O | SPI1_DIN / ESPI_IO_1 | P57 | S58 | ESPI_RESET# | 0   | eSPI INTERFACE |
| USBI/OUSB0+P60S61GNDUSBI/OUSB0-EN_OC#P61S62USB3_SSTX+OUSBUSBI/OUSB0_EN_OC#P62S63USB3_SSTX-OUSBN.C.P63S64GNDS64S0DUSBN.C.P64S65USB3_SSRX+IUSBUSBVOUSB1+P64S66USB3_SSRX+IUSBUSBVOUSB1-NOC#P66S67GNDUSBUSBVOUSB1_EN_OC#P67S68USB3_SVOUSBUSBVOUSB2+NOC#P69S70GNDUSBUSBVOUSB2-NOC#P70S71USB2_SSTX+OUSBUSBVOUSB2_EN_OC#P71S72USB2_SSTX-OUSBFUSAVOSPM_MOSIP72S73GNDUSDUSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPI 1 / eSPI INTERFACE | I/O | SPI1_DO / ESPI_IO_0  | P58 | S59 | USB5+       | I/O | USB            |
| USBI/OUSB0-EN_OC#P61S62USB3_SSTX+OUSBUSBI/OUSB0_EN_OC#P62S63USB3_SSTX-OUSBIN.C.P63S64GNDUSBUSBUSBI/OUSB1+P64S65USB3_SSRX+IUSBUSBI/OUSB1+P65S64USB3_SSRX-IUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-IUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB2_STP64S64USB3_SSRX-I/OUSBUSBI/OUSB2_STP74S74USB2_SSTX+OUSBUSBI/OUSB2_ST_OC#P71S72USB2_SSTX-OUSBFUSAI/OSPIM_MOSIP72S73GNDUSAUSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |     | GND                  | P59 | S60 | USB5-       | I/O | USB            |
| USBI/OUSB0_EN_OC#P62S63USB3_SSTA-OUSBN.C.P63S64GNDUSBN.C.P64S65USB3_SSRX+IUSBUSBI/OUSB1+P65S66USB3_SSRX-IUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S67GNDUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64S67GNDUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB1_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB2_EN_OC#P64S64USB3_SSRX-I/OUSBUSBI/OUSB2_STAP64S64USB3_SSRX-I/OUSBUSBI/OUSB2_STAP74S74USB2_SSTX+OUSBUSAI/OUSB2_EN_OC#P74S73GNDUSBUSBFUSAI/OSPIM_MOSIP72S73GNDUSAUSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | USB                    | I/O | USB0+                | P60 | S61 | GND         |     |                |
| N.C.P63S64GNDN.C.P64S65USB3_SSRX+IUSBUSBI/OUSB1+P64S66USB3_SSRX-IUSBUSBI/OUSB1-P66S67GNDUSBUSBI/OUSB1_EN_OC#P67S68USB3+I/OUSBUSBI/OUSB1_EN_OC#P68S69USB3-I/OUSBUSBI/OUSB2+P69S70GNDUSBUSBI/OUSB2-EN_OC#P70S71USB2_SSTX+OUSBUSBI/OUSB2_EN_OC#P71S72USB2_SSTX-OUSBFUSAI/OSPIM_MOSIP72S73GNDUSDUSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USB                    | I/O | USB0-                | P61 | S62 | USB3_SSTX+  | 0   | USB            |
| N.C.P64S65USB3_SSRX+IUSBUSBI/OUSB1+P65S66USB3_SSRX-IUSBUSBI/OUSB1-P66S67GNDUSBUSBI/OUSB1_EN_OC#P67S68USB3+I/OUSBUSBI/OUSB1_EN_OC#P68S69USB3-I/OUSBUSBI/OUSB2+P69S70GNDUSBUSBI/OUSB2-P70S71USB2_SSTX+OUSBUSBI/OSB2_EN_OC#P72S73GNDUSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | USB                    | I/O | USB0_EN_OC#          | P62 | S63 | USB3_SSTX-  | 0   | USB            |
| USBI/OUSB1+P65S66USB3_SSRX-IUSBUSBI/OUSB1-P66S67GNDVUSBI/OUSB1_EN_OC#P67S68USB3+I/OUSB1USBI/OUSB2+P69S69USB2_SSTX+I/OUSB1USBI/OUSB2-P70S71USB2_SSTX+OUSB1USBI/OUSB2_EN_OC#P72S73GNDVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |     | N.C.                 | P63 | S64 | GND         |     |                |
| USBI/OUSB1-P66S67GNDUSBI/OUSB1_EN_OC#P67S68USB3+I/OUSBUSBI/OUSB2+P69S70GNDUSB2I/OUSBUSBI/OUSB2-P70S71USB2_SSTX+OUSBUSBI/OUSB2_EN_OC#P71S72USB2_SSTX-OUSBFUSAI/OSPIM_MOSIP72S73GNDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |     | N.C.                 | P64 | S65 | USB3_SSRX+  | 1   | USB            |
| USBI/OUSB1_EN_OC#P67S68USB3+I/OUSBGNDF0F69S69USB3-I/OUSBUSBI/OUSB2+P69S70GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USB                    | I/O | USB1+                | P65 | S66 | USB3_SSRX-  |     | USB            |
| GNDP68S69USB3-I/OUSBUSBI/OUSB2+P69S70GNDUSBI/OUSB2-P70S71USB2_SSTX+OUSBUSBI/OUSB2_EN_OC#P71S72USB2_SSTX-OUSBFUSAI/OSPIM_MOSIP72S73GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | USB                    | I/O | USB1-                | P66 | S67 | GND         |     |                |
| USBI/OUSB2+P69S70GNDUSBI/OUSB2-P70S71USB2_SSTX+OUSBUSBI/OUSB2_EN_OC#P71S72USB2_SSTX-OUSBFUSAI/OSPIM_MOSIP72S73GNDImage: Comparison of the second sec | USB                    | I/O | USB1_EN_OC#          | P67 | S68 | USB3+       | I/O | USB            |
| USB       I/O       USB2-       P70       S71       USB2_SSTX+       O       USB         USB       I/O       USB2_EN_OC#       P71       S72       USB2_SSTX-       O       USB         FUSA       I/O       SPIM_MOSI       P72       S73       GND       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |     | GND                  | P68 | S69 | USB3-       | I/O | USB            |
| USB         I/O         USB2_EN_OC#         P71         S72         USB2_SSTX-         O         USB           FUSA         I/O         SPIM_MOSI         P72         S73         GND         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USB                    | I/O | USB2+                | P69 | S70 | GND         |     |                |
| FUSA I/O SPIM_MOSI P72 S73 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USB                    | I/O | USB2-                | P70 | S71 | USB2_SSTX+  | 0   | USB            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USB                    | I/O | USB2_EN_OC#          | P71 | S72 | USB2_SSTX-  | 0   | USB            |
| FUSA I/O THERMTRIP P73 S74 USB2_SSRX+ I USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FUSA                   | I/O | SPIM_MOSI            | P72 | S73 | GND         |     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FUSA                   | I/O | THERMTRIP            | P73 | S74 | USB2_SSRX+  | I   | USB            |

| USB               | I/O | USB3_EN_OC#    | P74  | S75  | USB2_SSRX-    | 1 | USB               |
|-------------------|-----|----------------|------|------|---------------|---|-------------------|
| PCI_e             | 0   | PCIE_A_RST#    | P75  | S76  | PCIE_B_RST#   | 0 | PCI-e             |
| USB               | I/O | USB4_EN_OC#    | P76  | S77  | PCIE_C_RST#   | 0 | PCI-e             |
| PCI-e             | 1   | PCIE_B_CLKREQ# | P77  | S78  | PCIE_C_RX+    |   | PCI-e             |
| PCI-e             | I   | PCIE_A_CLKREQ# | P78  | S79  | PCIE_C_RX-    | I | PCI-e             |
|                   |     | GND            | P79  | S80  | GND           |   | PCI-e             |
| PCI-e             | 0   | PCIE_C_REFCK+  | P80  | S81  | PCIE_C_TX+    | 0 | PCI-e             |
| PCI-e             | 0   | PCIE_C_REFCK-  | P81  | S82  | PCIE_C_TX-    | 0 | PCI-e             |
|                   |     | GND            | P82  | S83  | GND           |   |                   |
| PCI-e             | 0   | PCIE_A_REFCK+  | P83  | S84  | PCIE_B_REFCK+ | 0 | PCI-e             |
| PCI-e             | 0   | PCIE_A_REFCK-  | P84  | S85  | PCIE_B_REFCK- | 0 | PCI-e             |
|                   |     | GND            | P85  | S86  | GND           |   |                   |
| PCI-e             | 1   | PCIE_A_RX+     | P86  | S87  | PCIE_B_RX+    | I | PCI-e             |
| PCI-e             | I   | PCIE_A_RX-     | P87  | S88  | PCIE_B_RX-    |   | PCI-e             |
|                   |     | GND            | P88  | S89  | GND           |   |                   |
| PCI-e             | 0   | PCIE_A_TX+     | P89  | S90  | PCIE_B_TX+    | 0 | PCI-e             |
| PCI-e             | 0   | PCIE_A_TX-     | P90  | S91  | PCIE_B_TX-    | 0 | PCI-e             |
|                   |     | GND            | P91  | S92  | GND           |   |                   |
| DP++ INTERFACE #1 | 0   | DP1_LANE0+     | P92  | S93  | DP0_LANE0+    | 0 | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE0-     | P93  | S94  | DPO_LANEO-    | 0 | DP++ INTERFACE #0 |
|                   |     | GND            | P94  | S95  | DP0_AUX_SEL   | I | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE1+     | P95  | S96  | DPO_LANE1+    | 0 | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE1-     | P96  | S97  | DPO_LANE1-    | 0 | DP++ INTERFACE #0 |
|                   |     | GND            | P97  | S98  | DP0_HPD       |   | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE2+     | P98  | S99  | DP0_LANE2+    | 0 | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE2-     | P99  | S100 | DPO_LANE2-    | 0 | DP++ INTERFACE #0 |
|                   |     | GND            | P100 | S101 | GND           |   |                   |
| DP++ INTERFACE #1 | 0   | DP1_LANE3+     | P101 | S102 | DP0_LANE3+    | 0 | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | 0   | DP1_LANE3-     | P102 | S103 | DPO_LANE3-    | 0 | DP++ INTERFACE #0 |
|                   |     | GND            | P103 | S104 | N.C.          |   |                   |
|                   |     |                |      | 1    |               |   |                   |

| DP++ INTERFACE #1 | I   | DP1_HPD               | P104 | S105 | DP0_AUX+              | I/O | DP++ INTERFACE #0 |
|-------------------|-----|-----------------------|------|------|-----------------------|-----|-------------------|
| DP++ INTERFACE #1 | I/O | DP1_AUX+              | P105 | S106 | DP0_AUX-              | I/O | DP++ INTERFACE #0 |
| DP++ INTERFACE #1 | I/O | DP1_AUX-              | P106 | S107 | LCD1_BKLT_EN          | 0   | LCD_SUPPORT       |
| DP++ INTERFACE #1 | I   | DP1_AUX_SEL           | P107 | S108 | LVDS1_CK+             | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIOO / OKNOKO        | P108 | S109 | LVDS1_CK-             | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO1 / OKNOK1        | P109 | S110 | GND                   |     |                   |
| GPIO / FUSA       | I/O | GPIO2 / ALERT#        | P110 | S111 | LVDS1_0+              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO3 / SPIS_CS#      | P111 | S112 | LVDS1_0-              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO4 / SPIS_SCLK     | P112 | S113 | N.C.                  |     |                   |
| GPIO / FUSA       | I/O | GPIO5 / SPIS_MISO     | P113 | S114 | LVDS1_1+              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO6 / SPIS_MOSI     | P114 | S115 | LVDS1_1-              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO7 / CHXPMIC_EN    | P115 | S116 | LCD1_VDD_EN           | 0   | LCD_SUPPORT       |
| GPIO / FUSA       | I/O | GPIO8 / CHX_RLYSWITCH | P116 | S117 | LVDS1_2+              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO9 / CHXOKNOX0     | P117 | S118 | LVDS1_2-              | 0   | PRIMARY_DISPLAY   |
| GPIO / FUSA       | I/O | GPIO10 / CHXOKNOK1    | P118 | S119 | GND                   |     |                   |
| GPIO / FUSA       | I/O | GPIO11 / SPIM_CS#     | P119 | S120 | LVDS1_3+              | 0   | PRIMARY_DISPLAY   |
|                   |     | GND                   | P120 | S121 | LVDS1_3-              | 0   | PRIMARY_DISPLAY   |
| MANAGEMENT        | I/O | I2C_PM_CK             | P121 | S122 | LCD1_BKLT_PWM         | 0   | LCD_SUPPORT       |
| MANAGEMENT        | I/O | I2C_PM_DAT            | P122 | S123 | GPIO13 / SPIM_MISO    | I/O | GPIO / FUSA       |
| BOOT_SEL          |     | BOOT_SEL0#            | P123 | S124 | GND                   |     |                   |
| BOOT_SEL          | I.  | BOOT_SEL1#            | P124 | S125 | LVDS0_0+ / eDP0_TX0+  | 0   | PRIMARY_DISPLAY   |
| BOOT_SEL          | I   | BOOT_SEL2#            | P125 | S126 | LVDS0_0-/eDP0_TX0-    | 0   | PRIMARY_DISPLAY   |
| MANAGEMENT        | 0   | RESET_OUT#            | P126 | S127 | LCD0_BKLT_EN          | 0   | LCD_SUPPORT       |
| MANAGEMENT        | I   | RESET_IN#             | P127 | S128 | LVDS0_1+ / eDP0_TX1+  | 0   | PRIMARY_DISPLAY   |
| MANAGEMENT        | I   | POWER_BTN#            | P128 | S129 | LVDS0_1-/eDP0_TX1+    | 0   | PRIMARY_DISPLAY   |
| ASYNC_SERIAL      | 0   | SERO_TX               | P129 | S130 | GND                   |     |                   |
| ASYNC_SERIAL      | I   | SERO_RX               | P130 | S131 | LVDS0_2+ / eDP0_TX2+  | 0   | PRIMARY_DISPLAY   |
| ASYNC_SERIAL      | 0   | SERO_RTS#             | P131 | S132 | LVDS0_2- / eDP0_TX2-  | 0   | PRIMARY_DISPLAY   |
| ASYNC_SERIAL      | I   | SERO_CTS#             | P132 | S133 | LCD0_VDD_EN           | 0   | LCD_SUPPORT       |
|                   |     | GND                   | P133 | S134 | LVDS0_CK+ / eDP0_AUX+ | 0   | PRIMARY_DISPLAY   |

| ASYNC_SERIAL | 0 | SER1_TX   | P134 | S135 | LVDS0_CK- / eDP0_AUX- | 0   | PRIMARY_DISPLAY |
|--------------|---|-----------|------|------|-----------------------|-----|-----------------|
| ASYNC_SERIAL |   | SER1_RX   | P135 | S136 | GND                   |     |                 |
| ASYNC_SERIAL | 0 | SER2_TX   | P136 | S137 | LVDS0_3+ / eDP0_TX3+  | 0   | PRIMARY_DISPLAY |
| ASYNC_SERIAL |   | SER2_RX   | P137 | S138 | LVDS0_3- / eDP0_TX3-  | 0   | PRIMARY_DISPLAY |
| ASYNC_SERIAL | 0 | SER2_RTS# | P138 | S139 | I2C_LCD_CK            | 0   | LCD_SUPPORT     |
| ASYNC_SERIAL |   | SER2_CTS# | P139 | S140 | I2C_LCD_DAT           | I/O | LCD_SUPPORT     |
| ASYNC_SERIAL | 0 | SER3_TX   | P140 | S141 | LCD0_BKLT_PWM         | 0   | LCD_SUPPORT     |
| ASYNC_SERIAL |   | SER3_RX   | P141 | S142 | GPIO12 / SPIM_SCLK    | I/O | GPIO / FUSA     |
|              |   | GND       | P142 | S143 | GND                   |     |                 |
| CAN          | 0 | CANO_TX   | P143 | S144 | eDP0_HPD              | I   | PRIMARY_DISPLAY |
| CAN          | I | CANO_RX   | P144 | S145 | WDT_TIME_OUT#         | 0   | WATCHDOG        |
|              |   | N.C.      | P145 | S146 | PCIE_WAKE#            | I   | PCI_e           |
|              |   | N.C.      | P146 | S147 | VDD_RTC               |     |                 |
|              |   | VDD_IN    | P147 | S148 | LID#                  | I   | MANAGEMENT      |
|              |   | VDD_IN    | P148 | S149 | SLEEP#                | 1   | MANAGEMENT      |
|              |   | VDD_IN    | P149 | S150 | VIN_PWR_BAD#          | I   | MANAGEMENT      |
|              |   | VDD_IN    | P150 | S151 | CHARGING#             | I   | MANAGEMENT      |
|              |   | VDD_IN    | P151 | S152 | CHARGER_PRSNT#        | I   | MANAGEMENT      |
|              |   | VDD_IN    | P152 | S153 | CARRIER_STBY#         | 0   | MANAGEMENT      |
|              |   | VDD_IN    | P153 | S154 | CARRIER_PWR_ON        | 0   | MANAGEMENT      |
|              |   | VDD_IN    | P154 | S155 | FORCE_RECOV#          | I   | BOOT_SEL        |
|              |   | VDD_IN    | P155 | S156 | BATLOW#               | I   | MANAGEMENT      |
|              |   | VDD_IN    | P156 | S157 | TEST#                 | I   | MANAGEMENT      |
|              |   |           |      | S158 | GND                   |     |                 |

#### 3.2.1.1 LCD Display Support Signals

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers signal for direct driving of a panel and its display's backlight: enabling signals for panel (LCD0\_VDD\_EN) and backlight (LCD0\_BKLT\_EN), Backlight Brightness Control signal (LCD0\_BKLT\_PWM). These signals have an electrical of +1.8V\_RUN, so they will be adapted/level shifted by the carrier board for external use.

There are also the signals necessary for driving I2C Data and Clock lines of LCD EDID EEPROM.

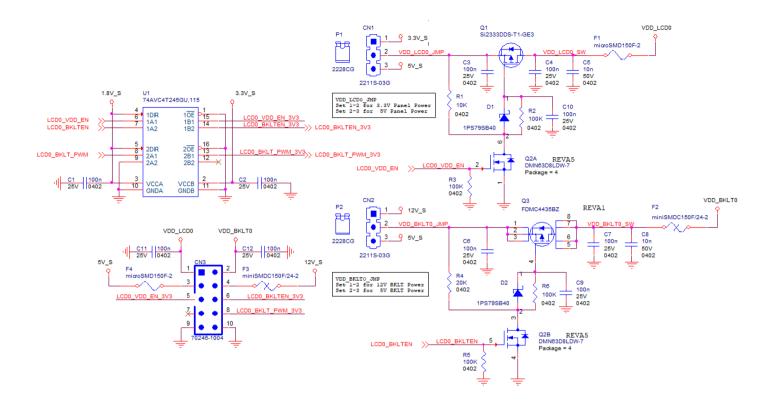
The panel control signals are:

LCD0\_VDD\_EN: Panel #0 Panel enable signal. Active high signal, +1.8V\_RUN electrical level Output.

LCD0\_BKLT\_EN: Panel #0 Panel Backlight Enable signal. It can be used to turn On/Off the backlight's lamps of a connected LVDS display. Active high signal, +1.8V\_RUN electrical level Output.

LCD0\_BKLT\_PWM: This signal can be used to adjust the Panel #0 backlight brightness in displays supporting Pulse Width Modulated (PWM) regulations. +1.8V\_RUN electrical level Output.

I2C\_LCD\_DAT: LCD I2C Data. This signal is used to read the LCD display EDID EEPROM. +1.8V\_RUN electrical level with a 2.2k $\Omega$  pull-up resistor.


I2C\_LCD\_CLK: LCD I2C Clock: This signal is used to read the LCD display EDID EEPROM. +1.8V\_RUN electrical level with a 2.2kΩ pull-up resistor.

Please refer to the following schematics as an example of implementation for LCD and backlight support signals driving connection + voltage level shifters on the carrier board.

All schematics (henceforth also referred to as material) contained in this manual are provided by SECO S.p.A. for the sole purpose of supporting the customers' internal development activities.

The schematics are provided "AS IS". SECO makes no representation regarding the suitability of this material for any purpose or activity and disclaims all warranties and conditions with regard to said material, including but not limited to, all expressed or implied warranties and conditions of merchantability, suitability for a specific purpose, title and non-infringement of any third party intellectual property rights.

The customer acknowledges and agrees to the conditions set forth that these schematics are provided only as an example and that he will conduct an independent analysis and exercise judgment in the use of any and all material. SECO declines all and any liability for use of this or any other material in the customers' product design



#### 3.2.1.2 eDP / Dual Channel LVDS (factory alternatives)

The Intel® family of SOCs formerly coded as Elkhart Lake offers a wide range of single and multi-purpose Digital Display Interfaces.

THE MODULE offers one embedded Display Port (eDP) interface or Dual Channel LVDS (factory alternatives), two multimode display ports (DP++) or one multimode display port (DP++) and one HDMI.

The LVDS interface, which is frequently used in many application fields, is not directly supported by the SOC. For this reason, considering that LVDS dual channel interfaces can be factory alternative on the same pins with eDP interface, on the module can be implemented an eDP to LVDS bridge (NXP PTN3460), which allow the implementation of a Dual Channel LVDS, with a maximum supported resolution of 1920x1200 @ 60Hz (dual channel mode). Such an interface is derived from the SOCs' dedicated eDP Interface.

Please remember that LVDS interface is not native for the Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake, it is derived from an optional eDP-to-LVDS bridge. Depending on the factory option purchased, on the same pins it is possible to have available LVDS or eDP interface.
 Please take care of specifying if it is necessary LVDS interface or eDP, before placing an order of this product.

ONLY ONE set of signals from the following two sets are present, dependent on the factory board configuration.

EITHER the signals for Channel #0 are LVDS:

LVDS0\_0+/LVDS0\_0-: LVDS Channel #0 differential data pair #0.

LVDS0\_1+/LVDS0\_1-: LVDS Channel #0 differential data pair #1.

LVDS0\_2+/LVDS0\_2-: LVDS Channel #0 differential data pair #2.

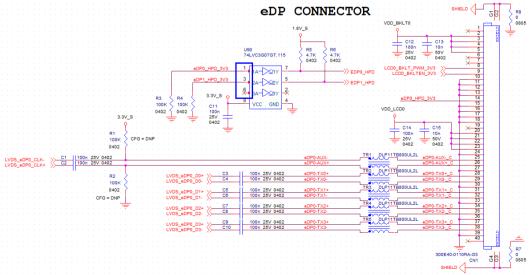
LVDS0\_3+/LVDS0\_3-: LVDS Channel #0 differential data pair #3.

LVDS0\_CK+/LVDS0\_CK-: LVDS Channel #0 differential Clock.

OR the signals for Channel #0 are eDP:

eDP0\_TX0+/ eDP0\_TX0-: eDP Channel #0 differential data pair #0.

eDP0\_TX1+/ eDP0\_TX1-: eDP Channel #0 differential data pair #1.


eDP0\_TX2+/ eDP0\_TX2-: eDP Channel #0 differential data pair #2.

eDP0\_TX3+/ eDP0\_TX3-: eDP Channel #0 differential data pair #3.

eDP0\_AUX+/ eDP0\_AUX-: eDP Channel #0 differential Clock.

eDP0\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_RUN electrical level from carrier board. 1MΩ pull-down resistor is placed on module for this signal.

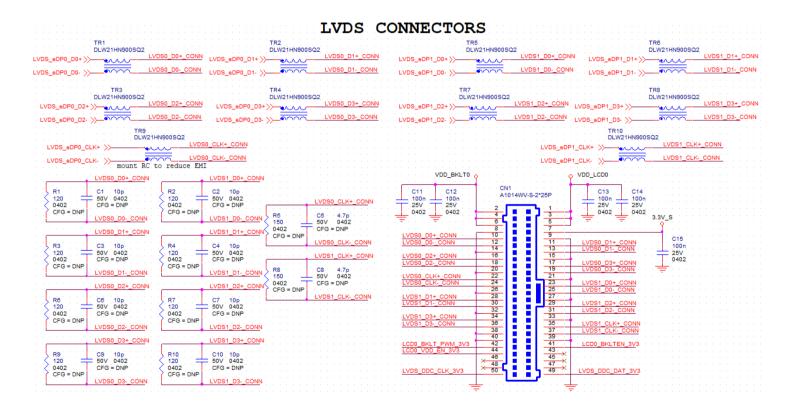
Please refer to the following schematics as an example of connection of eDP interface on the carrier board. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation.





The signals for Channel #1 are LVDS, when this interface is selected in factory board configuration, otherwise these pins will be not connected.

LVDS1\_1+ / LVDS1\_0- : LVDS Channel #1 differential data pair #0


LVDS1\_1+/ LVDS1\_1-: LVDS Channel #1 differential data pair #1

LVDS1\_2+/LVDS1\_2-: LVDS Channel #1 differential data pair #2

LVDS1\_3+/ LVDS1\_3-: LVDS Channel #1 differential data pair #3

LVDS1\_CK+/ LVDS1\_CK-: LVDS Channel #1 differential Clock

Please refer to the following schematics as an example of connection of dual channel LVDS interface on the carrier board, with EMI filtering section included.





#### 3.2.1.3 HDMI / DP++ (factory alternatives) interface signals

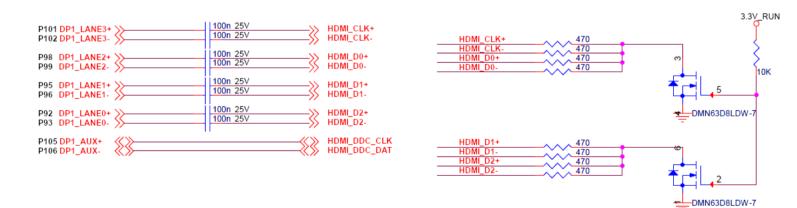
As described in the previous paragraph, the Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers, as secondary display interface, a native multimode Digital Display Interface, configurable as a factory alternative to work as a multimode Display Port (DP++) with a resolution up to 4096 x 2160 @60Hz or DC coupled HDMI signals for the implementation on the carrier board of a decoupling circuit for HDMI v1.4 with a resolution up to 3840 x 2160 @30Hz or a retimer circuit for HDMI 2.0 for color depth up to 16 bit.

EITHER the signals for the Channel are HDMI:

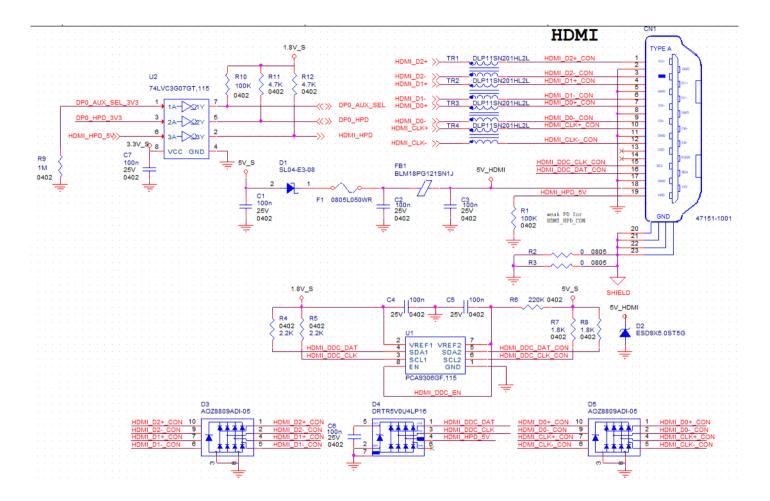
HDMI\_D0+/HDMI\_D0-: HDMI Output Differential Pair #0

HDMI\_D1+/HDMI\_D1-: HDMI Output Differential Pair #1

HDMI\_D2+/HDMI\_D2-: HDMI Output Differential Pair #2


HDMI\_CK+/HDMI\_CK-: HDMI Differential Clock

HDMI\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_RUN electrical level from carrier board. 1MQ pull-down resistor is placed on module for this signal.


HDMI\_CTRL\_CK: DDC Clock line for HDMI panel. Bidirectional signal, +1.8V\_RUN electrical level with a 100k $\Omega$  pull-up resistor

HDMI\_CTRL\_DAT: DDC Data line for HDMI panel. Bidirectional signal, +1.8V\_RUN electrical level with a 100k $\Omega$  pull-up resistor

Please refer to the following schematics as an implementation example of the decoupling circuit for HDMI 1.4 compliance. For implementation of a retimer circuit for HDMI 2.0 compliance please refer to the TI SN75DP159 datasheet for reference designs.



Please refer to the following schematics as an example of connection of HDMI interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression, as well as common mode choke inductors for EMI purpose. Voltage level shifters are necessary on Control data/Clock signals, as well as for Hot Plug Detect signal.



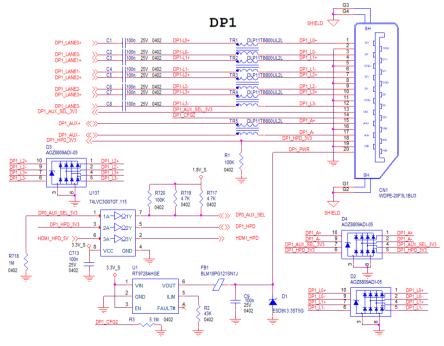
OR the signals for the Channel are DP++:

DP1\_LANE0+/ DP1\_LANE0-: DP Channel #1 Output Differential Pair #0

DP1\_LANE1+/ DP1\_LANE1-: DP Channel #1 Output Differential Pair #1

DP1\_LANE2+/ DP1\_LANE2-: DP Channel #1 Output Differential Pair #2

DP1\_LANE3+/ DP1\_LANE3-: DP Channel #1 Output Differential Pair #3


DP1\_AUX+: DDC Clock line for DP Channel #1. Bidirectional signal, +3.3V\_RUN electrical level with a 100kΩ pull-up resistor

DP1\_AUX-: DDC Data line for DP Channel #1. Bidirectional signal, +3.3V\_RUN electrical level with a 100kΩ pull-up resistor

DP1\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_RUN electrical level from carrier board. 1MΩ pull-down resistor is placed on module for this signal.

DP1\_AUX\_SEL: Select input signal to switch between I2C Clock/Data for HDMI (high level) and Display Port Auxiliary Channel for DP/HDMI (low level).  $1M\Omega$  pull-down resistor is placed on module for this signal.

Please refer to the following schematics as an example of connection of DP interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation. Switch with settable current limit on power lines are recommended.



#### 3.2.1.4 DP++ interface signals

As described in the previous paragraph, the Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers a native multimode Display Port (DP) interface, with a resolution up to 4096 x 2160 @60Hz

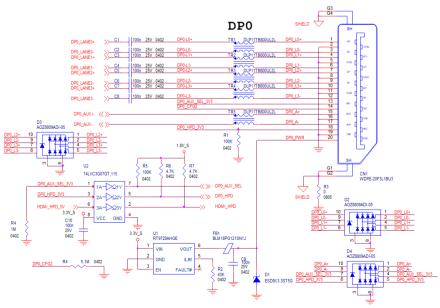
The signals related to DP++ are as follows:

DP0\_LANE0+/ DP0\_LANE0-: DP Channel #0 differential data pair #0.

DP0\_LANE1+/ DP0\_LANE1-: DP Channel #0 differential data pair #1.

DP0\_LANE2+/ DP0\_LANE2-: DP Channel #0 differential data pair #2.

DP0\_LANE3+/ DP0\_LANE3-: DP Channel #0 differential data pair #3.


DP0\_HPD: Hot Plug Detect, Active high Input signal of +1.8V\_RUN electrical level from carrier board. 1MΩ pull-down resistor is placed on module for this signal.

DP0\_AUX+: DDC Clock line for DP Channel #0. Bidirectional signal, +3.3V\_RUN electrical level with a 100kΩ pull-up resistor

DP0\_AUX-: DDC Data line for DP Channel #0. Bidirectional signal, +3.3V\_RUN electrical level with a 100k0 pull-up resistor

DP0\_AUX\_SEL: Select input signal to switch between I2C Clock/Data for HDMI (high level) and Display Port Auxiliary Channel for DP/HDMI (low level). 1MΩ pulldown resistor is placed on module for this signal.

Please refer to the following schematics as an example of connection of DP interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression. Hot Plug Detect signal must be buffered to prevent back feeding of power from the display to the module as well as level translation. Switch with settable current limit on power lines are recommended.

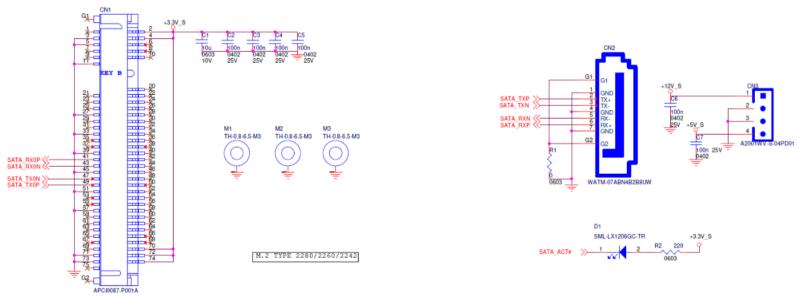


# 3.2.1.5 SATA interface signals

The Intel® family of SOCs formerly coded as Elkhart Lake offers one S-ATA interface.

The interface is Gen3 compliant, with support of 1.5Gbps, 3.0 Gbps and 6.0 Gbps data rates

Here following the signals related to SATA interface:


SATA\_TX+/SATA\_TX-: Serial ATA Channel #1 Transmit differential pair

SATA\_RX+/SATA\_RX-: Serial ATA Channel #1 Receive differential pair

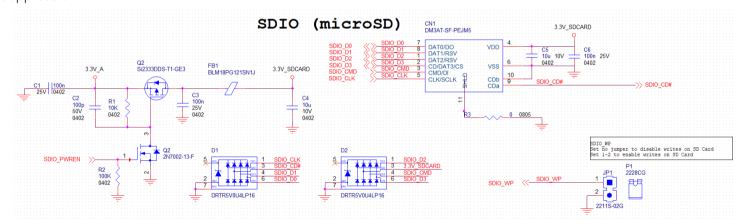
SATA\_ACT#: Serial ATA Activity Led. Active low output signal at +3.3V\_RUN voltage

10nF AC series decoupling capacitors are placed on each line of SATA differential pairs.

On the carrier board, these signals can be carried out directly to a SATA M 7p connector or switched for an M.2 SSD Slot, which allow plugging M.2 Socket 2 Key B Solid State Drives. Please refer to the following schematics as an example of connection of SATA interface on the carrier board to selected connector.



# 3.2.1.6 SDI/O interface signals


The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers one SD Card controller, able to support SD Card 3.0 interface. Such an SD controller complies with SD Host Controller Standard Specification version 3.01 and only supports devices for data storage. The SD port is externally accessible through the SD Card Slot connector, can work in 1-bit and 4-bit mode operation with data rate up to 104MB/s. The signals related to SDIO are as follows: SDIO\_WP: Write Protect input, electrical level +3.3V\_RUN with 10kΩ pull-up resistor. It is used to communicate the status of Write Protect switch of the external SD card. Since microSD cards don't manage this signal, it is important that, when designing carrier boards with microSD slots, this signal must be tied to GND, otherwise the OS will always consider the card as protected from writing.

SDIO\_CMD: Command/Response line. Bidirectional signal, electrical level +3.3V\_RUN, used to send command from Host (Intel processor) to the connected card, and to send the response from the card to the Host.

SDIO\_CD#: Card Detect Input. Active Low Signal, electrical level +3.3V\_RUN with 10kΩ pull-up resistor. This signal must be externally pulled low to signal that a SDIO/MMC Card is present.

SDIO\_CK: Clock Line (output), 50 MHz maximum frequency for SD/SDIO High Speed Mode.

SDIO\_PWR\_EN: SDIO Power Enable output, active high signal, electrical level +3.3V\_RUN. It is used to enable the power line supplying SD/SDIO/MMC devices. SDIO\_[D0÷D3]: SD Card data bus. SDIO\_D0 signal is used for all communication modes. SDIO\_[D1÷D3] signals are required for 4-bit communication mode. Please refer to the following schematics as an example of connection of SDIO interface on the carrier board, with Voltage clamping diodes highly recommended on all signal lines for ESD suppression.



### 3.2.1.7 SPI interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers also one dedicated Serial Peripheral Interface (SPI0) for boot device purpose and one general purpose Serial Peripheral Interface (SPI1) or eSPI (factory alternatives).

The signals related to SPIO are as follows:

SPI0\_CS0#: SPI channel #0 primary Chip select, active low output signal. Electrical level +1.8V\_ALW

On the same bus there is a second SPI slave device (BIOS flash boot device), mounted on the module, connected to a dedicated chip select signal

SPI0\_CK: SPI channel #0 Clock Output to carrier board's SPI embedded devices. Electrical level +1.8V\_ALW

SPI0\_DIN: SPI channel #0 Master Data Input, electrical level +1.8V\_ALW

SPI0\_DO: SPI channel #0 Master Data Output, electrical level +1.8V\_ALW

ONLY ONE set of signals from the following two sets are present, dependent on the factory board configuration.

EITHER the signals for the SPI1 are general-purpose SPI bus:

SPI1\_CS0#: SPI channel #1 primary Chip select, active low output signal. Electrical level +1.8V\_ALW

SPI1\_CS1#: SPI channel #1 secondary Chip select, active low output signal. Electrical level +1.8V\_ALW

SPI1\_CK: SPI channel #1 Clock Output to carrier board's SPI embedded devices. Electrical level +1.8V\_ALW

SPI1\_DIN: SPI0 channel #1 Master Data Input, electrical level +1.8V\_ALW

SPI1\_DO: SPI0 channel #1 Master Data Output, electrical level +1.8V\_ALW

OR the signals for the SPI1 are Enhanced Serial Peripheral Interface (eSPI) bus:

ESPI\_CK: ESPI Master Clock Output. Electrical level +1.8V\_ALW. The reference timing signal for all the serial input and output operations

ESPI\_CSO#: ESPI Master Chip Select Output #0. Electrical level +1.8V\_ALW. Driven low by the processor to select the ESPI slave device on the carrier board.

ESPI\_CS1#: ESPI Master Chip Select Output #1. Electrical level +1.8V\_ALW. This signal must be used only in case there are two ESPI devices on the carrier board, and the first chip select signal (ESPI\_CS0#) has already been used. It must not be used in case there is only one ESPI device

ESPI\_IO\_[0:3]: ESPI Master Data Bidirectional. Electrical level +1.8V\_ALW. Data transfer between the master and slaves. In Single I/O mode, ESPI\_IO\_0 is the eSPI master output/eSPI slave input (MOSI) whereas ESPI\_IO\_1 is the eSPI master input/eSPI slave output (MISO).

ESPI\_RESET#: ESPI Reset. Output. Electrical level +1.8V\_ALW with 75k pull-down resistor. Reset the ESPI interface for both master and slaves.

ESPI\_ALERTO#: Alert signal driven by the slave ESPI slave device #0. Input. Electrical level +1.8V\_ALW

ESPI\_ALERT1#: Alert signal driven by the slave ESPI slave device #1. Input. Electrical level +1.8V\_ALW

#### 3.2.1.8 Audio interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake supports I2S and HD audio format, thanks to native support offered by the processor to this audio codec standard.

Here are following the signals related to I2S Audio interface:

AUDIO\_MCK: Master clock output to Audio codec. Output from the module to the Carrier board, electrical level +1.8V\_RUN

I2SO\_LRCK: Left& Right audio interface #0 synchronization clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

I2S0\_SDOUT: Digital audio interface #0 Output. Output from the module to the Carrier board, electrical level +1.8V\_RUN

I2S0\_SDIN: Digital audio interface #0 Input. Input from the module to the Carrier board, electrical level +1.8V\_RUN

I2S0\_CK: Digital audio interface #0 clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

All these signals can be connected, on the Carrier Board, to an I2S Audio Codec. Please refer to the chosen Codec's Reference Design Guide for correct implementation of audio section on the carrier board.

Here are following the signals related to HD Audio interface:

HDA\_SYNC: Synchronization clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

HDA\_SDO: Digital audio Output. Output from the module to the Carrier board, electrical level +1.8V\_RUN

HDA\_SDI: Digital audio Input. Input from the module to the Carrier board, electrical level +1.8V\_RUN

HDA\_CK: Digital audio clock. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN

HDA\_RST#: Digital Audio Reset. This signal is multiplexed with GPIO4. This pin has to be defined via BIOS so that GPIO4/HDA\_RST# is in HDA\_RST# modality.

All these signals have to be connected, on the Carrier Board, to an HD Audio Codec. Please refer to the chosen Codec's Reference Design Guide for correct implementation of audio section on the carrier board.

#### 3.2.1.9 I2C / SM bus Interface

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake supports one general purpose I2C interface and one power management SM bus. Here are following the signals related to general purpose I2C interface:

 $I2C_GP_CK$ : I2C General Purpose clock signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN with 2.2k $\Omega$  pull-up resistor I2C\_GP\_DAT: I2C General Purpose data signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_RUN with 2.2k $\Omega$  pull-up resistor Here are following the signals related to power management SM bus:

I2C\_PM\_CK: SMB Power management clock signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_ALW with 2.2kΩ pull-up resistor. This signal is managed by the Embedded controller MEC1705 from Microchip.

I2C\_PM\_DAT: SMB Power management data signal. Bi-Directional between the module to the Carrier board, electrical level +1.8V\_ALW with 2.2kΩ pull-up resistor This signal is managed by the Embedded controller MEC1705 from Microchip.

# 3.2.1.10 Asynchronous Serial Ports (UART) interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers in its Low Power Sub System (LPSS) two high speed UART, with a maximum speed of 115,200 kb/s or 3.6864Mb/s depending on Industry standards.

In addition, two additional UART are offered and managed by the Embedded controller MEC1705 from Microchip

SER0\_TX: UART #0 Interface, Serial data Transmit (output) line, 1.8V\_RUN electrical level. It is managed by Microchip MEC1705 controller.

SER0\_RX: UART #0 Interface, Serial data Receive (input) line, 1.8V\_RUN electrical level. It is managed by Microchip MEC1705 controller.

SER0\_RTS#: UART #0 Interface, Handshake signal, Request to Send (output) line, 1.8V\_ RUN electrical level

SER0\_CTS#: UART #0 Interface, Handshake signal, Clear to Send (Input) line, 1.8V\_ RUN electrical level

SER1\_TX: HS-UART #0 Interface, Serial data Transmit (output) line, 1.8V\_ RUN electrical level. It is directly managed by Intel processor.

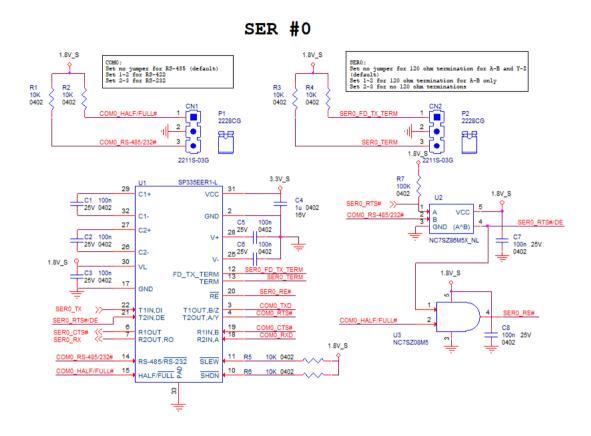
SER1\_RX: HS-UART #0 Interface, Serial data Receive (input) line, 1.8V\_ RUN electrical level. It is directly managed by Intel processor.

SER2\_TX: UART #1 Interface, Serial data Transmit (output) line, 1.8V\_ RUN electrical level. It is managed by Microchip MEC1705 controller.

SER2\_RX: UART #1 Interface, Serial data Receive (input) line, 1.8V\_ RUN electrical level. It is managed by Microchip MEC1705 controller.

SER2\_RTS#: UART #1 Interface, Handshake signal, Request to Send (output) line, 1.8V\_ RUN electrical level.

SER2\_CTS#: UART #1 Interface, Handshake signal, Clear to Send (Input) line, 1.8V\_ RUN electrical level.


SER3\_RX: HS-UART #1 Interface, Serial data Receive (input) line, +1.8V\_RUN electrical level. It is directly managed by Intel processor.

SER3\_TX: HS-UART #1 Interface, Serial data Transmit (output) line, +1.8V\_RUN electrical level. It is directly managed by Intel processor.

Please consider that interface is at +1.8V\_ RUN electrical level; therefore, please evaluate well the typical scenario of application. If there isn't any explicit need of interfacing directly at +1.8V\_ RUN level, for connection to standard serial ports commonly available (like those offered by common PCs, for example) it is mandatory to include an RS-232 transceiver on the carrier board.



In the following schematic here is an example of UART interface on the carrier board, with a multiprotocol transceiver allowing to support RS485/RS-422/RS-232 serial interfaces.



#### 3.2.1.11 USB interface signals

The Intel<sup>®</sup> family of SOCs formerly coded as Elkhart Lake offers an xHCI USB controller, which is able to manage up to 4 Superspeed ports (i.e. USB 3.1 compliant) and up to 10 ports in USB 2.0 mode only, one of them also capable of OTG.

In THE MODULE, there are up to 6 ports in USB2.0 only and up to 2 Super Speed (SS) ports (i.e. USB 3.1 compliant).

All USB 2.0 ports are able to work in High Speed (HS), Full Speed (FS) and Low Speed (LS).

Here following the signals related to USB interfaces.

USB0+/ USB0-: Universal Serial Bus 2.0 Port #0 differential pair (directly managed by Intel processor)

USB0\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for over current operation information.

USB1+/ USB1-: Universal Serial Bus Port 2.0 #1 differential pair.

USB1\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB2+/USB2-: Universal Serial Bus Port 2.0 #2 differential pair.

USB2\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10k $\Omega$  pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB3+/USB3-: Universal Serial Bus Port 2.0 #3 differential pair.

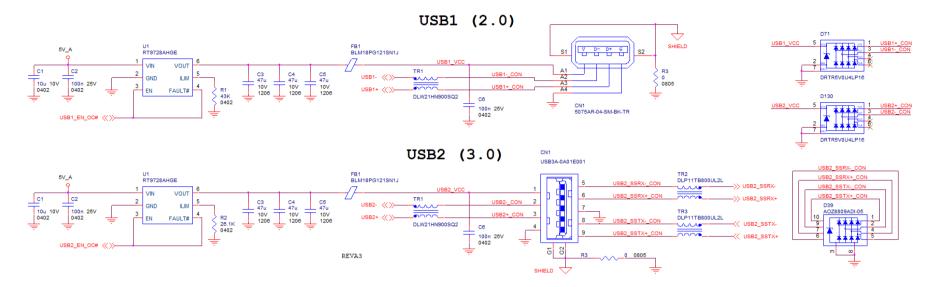
USB3\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB4+/USB4-: Universal Serial Bus Port 2.0 #4 differential pair.

USB4\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.

USB5+/USB5-: Universal Serial Bus Port 2.0 #3 differential pair.

USB5\_EN\_OC#: Power Enable and over current monitoring function. Active Low Output signal, +3.3V\_ALW electrical level with a 10kΩ pull-up resistor. Refer to SMARC 2.1 Specification for OC operation information.


USB2\_SSTX+/ USB2\_SSTX-: USB 3.0 Port #1 Superspeed Transmit differential pair.

USB2\_SSRX+/ USB2\_SSRX-: USB 3.0 Port #1 Superspeed Receive differential pair.

USB3\_SSTX+/ USB3\_SSTX-: USB 3.0 Port #2 Superspeed Transmit differential pair.

USB3\_SSRX+/ USB3\_SSRX-: USB 3.0 Port #2 Superspeed Receive differential pair.

For EMI/ESD protection, common mode chokes on USB data lines, and clamping diodes on USB data and voltage lines, are also needed. Switch with settable current limit on power lines are recommended.



#### 3.2.1.12 PCI Express interface signals

The module can offer externally up to four PCI Express lane, which are directly managed by the Intel® family of SOCs formerly coded as Elkhart Lake.

PCI express Gen 3.0 (8GT/s) is supported.

Here following the signals involved in PCI express management

PCIE\_A\_RX+/ PCIE\_A\_RX-: PCI Express lane #0, Receiving Input Differential pair

PCIE\_A\_TX+/PCIE\_A\_TX-: PCI Express lane #0, Transmitting Output Differential pair

PCIE\_A\_REFCK+/ PCIE\_A\_REFCK-: PCI Express Reference Clock for lane #0, Differential Pair

PCIE\_A\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_RUN electrical level with a 100kΩ pull-down resistor. It can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board.

PCIE\_A\_CKREQ#: PCI Express Port A clock request signal, used from a PCI-e device to request the need for PCI Express Reference Clock. Bidirectional signal, +3.3V\_RUN electrical level with a 10k pull-up resistor.

PCIE\_B\_RX+/ PCIE\_B\_RX-: PCI Express lane #1, Receiving Input Differential pair

PCIE\_B\_TX+/PCIE\_B\_TX-: PCI Express lane #1, Transmitting Output Differential pair

PCIE\_B\_REFCK+/ PCIE\_B\_REFCK-: PCI Express Reference Clock for lane #1, Differential Pair

PCIE\_B\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_RUN electrical level with a 100kQ pull-down resistor. It can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board. This signal is shared

PCIE\_B\_CKREQ#: PCI Express Port B clock request signal, used from a PCI-e device to request the need for PCI Express Reference Clock. Bidirectional signal, +3.3V\_RUN electrical level with a 10k pull-up resistor.

PCIE\_C\_RX+/ PCIE\_C\_RX-: PCI Express lane #2, Receiving Input Differential pair

PCIE\_C\_TX+/PCIE\_C\_TX-: PCI Express lane #2, Transmitting Output Differential pair

PCIE\_C\_REFCK+/ PCIE\_C\_REFCK-: PCI Express Reference Clock for lane #2, Differential Pair

PCIE\_C\_RST#: Reset Signal that is sent from SMARC Module to a PCI-e device available on the carrier board. Active Low, +3.3V\_RUN electrical level with a 100k<sub>Ω</sub> pull-down resistor. It can be used directly to drive externally a single RESET Signal. In case Reset signal is needed for multiple devices, it is recommended to provide for a buffer on the carrier board.

PCIE\_D\_RX+/ PCIE\_D\_RX-: PCI Express lane #3, Receiving Input Differential pair

PCIE\_D\_TX+/PCIE\_D\_TX-: PCI Express lane #3, Transmitting Output Differential pair

PCIE\_WAKE#: PCIe wake up interrupt to host input signal. Active low, +3.3V\_ALW electrical level with a 10k pull-up resistor.

In the following table are shown the possible groupings allowed of the PCI-e lanes:

| Allowed groupings        | Lane #0 | Lane #1 | Lane #2      | Lane #3 |
|--------------------------|---------|---------|--------------|---------|
| 1 PCI-e x 4 port         |         | ,       | $\checkmark$ |         |
| 2 PCI- e x2              |         |         |              |         |
| 1 PCI-e x 2 + 2 PCI-e x1 |         |         |              |         |
| 4 PCI-e x1               |         |         |              |         |

Please also be aware that this grouping cannot be changed dynamically, it is a fixed feature of the BIOS.

The customer in phase of order must select what grouping to have for PCI-e lanes.

# 3.2.1.13 SERDES interface signal

The module can offer one optional SERDES interface, alternative to fourth PCI-e lane. The most common use for this interface is the implementation of an additional LAN port on carrier board with SGMII interface.

Here following the signals involved in SERDES management:

SERDES\_0\_TX+/ SERDES\_0\_TX-: Differential SERDES 0 Transmit Data Pair

SERDES\_0\_RX+/ SERDES\_0\_RX-: Differential SERDES 0 Receive Data Pair

MDIO\_CLK: MDIO Signals to Configure Possible PHYs. +1.8V\_ RUN electrical level with 2k2Ω pull-up resistor.

MDIO\_DAT: MDIO Signals to Configure Possible PHYs. +1.8V\_ RUN electrical level with  $2k2\Omega$  pull-up resistor.

#### 3.2.1.14 Gigabit Ethernet signals

Gigabit Ethernet interfaces are realized on the module by using two TI Gigabit Ethernet PHY transceivers DP83867, which are interfaced to Intel processor through RGMII interface.

Here following the signals involved in Gigabit Ethernet #0 management:

GBE0\_MDI0+/GBE0\_MDI0-: Media Dependent Interface (MDI) Transmit/Receive differential pair

GBE0\_MDI1+/GBE0\_MDI1-: Media Dependent Interface (MDI) Transmit differential pair

GBE0\_MDI2+/GBE0\_MDI2-: Media Dependent Interface (MDI) Transmit differential pair

GBE0\_MDI3+/GBE0\_MDI3-: Media Dependent Interface (MDI) Transmit differential pair

GBE0\_LINK\_ACT#: Ethernet controller activity indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE0\_LINK100#: Ethernet controller 100Mbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE0\_LINK1000#: Ethernet controller 1Gbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE0\_SDP: Software defined pin, directly managed by TI Gigabit Ethernet PHY transceiver #0. Bidirectional signal, +3.3V\_ALW electrical level.

Here following the signals involved in Gigabit Ethernet #1 management:

GBE1\_MDI0+/GBE1\_MDI0-: Media Dependent Interface (MDI) Transmit/Receive differential pair

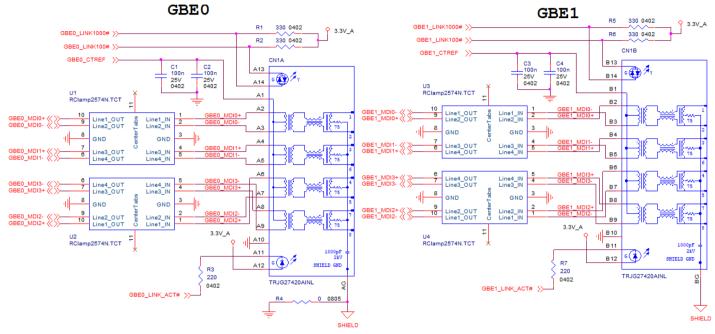
GBE1\_MDI1+/GBE1\_MDI1-: Media Dependent Interface (MDI) Transmit differential pair

GBE1\_MDI2+/GBE1\_MDI2-: Media Dependent Interface (MDI) Transmit differential pair

GBE1\_MDI3+/GBE1\_MDI3-: Media Dependent Interface (MDI) Transmit differential pair

GBE1\_LINK\_ACT#: Ethernet controller activity indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE1\_LINK100#: Ethernet controller 100Mbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level


GBE1\_LINK1000#: Ethernet controller 1Gbps link indicator. Active Low Output signal, +3.3V\_ALW electrical level

GBE1\_SDP: Software defined pin, directly managed by TI Gigabit Ethernet PHY transceiver #1. Bidirectional signal, +3.3V\_ALW electrical level.

Please refer to the following schematics as an example of connection of Ethernet interface on the carrier board, with TVS diodes specifically designed to protect

sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by ESD. In this example, it is also present GBE\_CTREF signal connected on pin #2 of the RJ-45 connector. TI Gigabit Ethernet PHY transceiver, however, doesn't need the analog powered centre tap, therefore the signal GBE\_CTREF is not available on SMARC connector.

Please notice that if just a FastEthernet (i.e. 10/100 Mbps) is needed, then only MDI0 and MDI1 differential lanes are necessary, for both Gigabit Ethernet interfaces



#### 3.2.1.15 CAN interface signals

Two CAN interfaces, directly managed by the Elkhart Lake processor, are available on SMARC card edge connector.

CAN0\_TX: CAN Transmit Output for CAN Bus Channel 0. +1.8V\_RUN electrical voltage level signal.

CANO\_RX: CAN Receive Input for CAN Bus Channel 0. +1.8V\_RUN electrical voltage level signal.

CAN1\_TX: CAN Transmit Output for CAN Bus Channel 1. +1.8V\_RUN electrical voltage level signal.

CAN1\_RX: CAN Receive Input for CAN Bus Channel 1. +1.8V\_RUN electrical voltage level signal.

Please consider that it is not possible to connect the SMARC CAN interface to any CAN Bus directly, it is necessary to integrate a CAN Bus Transceiver in the Carrier board.

#### 3.2.1.16 Watchdog

WDT\_TIME\_OUT#: Watchdog timer Output. +1.8V\_DSW electrical level

# 3.2.1.17 GPIO signals

The Embedded controller MEC1705 GPIO interface provides general purpose input monitoring and output control, as well as many other features for the GPIO described on datasheet.

The signals involved in GPIO management are:

GPIO0: General Purpose I/O #0, +1.8V\_DSW electrical level

GPIO1: General Purpose I/O #1, +1.8V\_DSW electrical level

GPIO2: General Purpose I/O #2, +1.8V\_DSW electrical level

GPIO3: General Purpose I/O #3, +1.8V\_DSW electrical level

GPIO4: General Purpose I/O #4, +1.8V\_DSW electrical level

GPIO5: General Purpose I/O #5, +1.8V\_DSW electrical level

GPIO6: General Purpose I/O #6, +1.8V\_DSW electrical level

GPIO7: General Purpose I/O #7, +1.8V\_DSW electrical level

GPIO8: General Purpose I/O #8, +1.8V\_DSW electrical level

GPIO9: General Purpose I/O #9, +1.8V\_DSW electrical level

GPIO10: General Purpose I/O #10, +1.8V\_DSW electrical level

- GPIO11: General Purpose I/O #11, +1.8V\_DSW electrical level
- GPIO12: General Purpose I/O #12, +1.8V\_DSW electrical level
- GPIO13: General Purpose I/O #13, +1.8V\_DSW electrical level

# 3.2.1.18 FuSa signals

As a factory alternative to GPIO signals, the module does provide functional safety functions through following signals:

OKNOK0: Output antivalent signal for error indication to the system. Intel<sup>®</sup> Safety Island has an error collection hub that receives errors from processor, classifies them into severity levels and reports them as an output state to the system through this signal. +1.8V\_ALW electrical level. Combined with OKNOK1, the system will switch to safe state for any of following OKNOK0 / OKNOK1 states ( "0" / "0" power off, "0" / "1" error state, "1" / "1" reset state), while is in normal operating state "OK" with "1" / "1" (no fault). "0" stands for low level (GND), while "1" stands for high level (+1.8V\_ALW).

OKNOK1: Output antivalent signal for error indication to the system. Intel<sup>®</sup> Safety Island has an error collection hub that receives errors from processor, classifies them into severity levels and reports them as an output state to the system through this signal. +1.8V\_ALW electrical level. Combined with OKNOK1, the system will switch to safe state for any of following OKNOK0 / OKNOK1 states ( "0" / "0" power off, "0" / "1" error state, "1" / "1" reset state), while is in normal operating state "OK" with "1" / "1" (no fault). "0" stands for low level (GND), while "1" stands for high level (+1.8V\_ALW).

ALERT#: Output signal indicating that a correctable error occurred. Active low signal, +3.3V\_ALW electrical level with 4k7 pull up resistor

SPIS\_CS#: SPI Slave chip select active low input, +1.8V\_ALW electrical level

SPIS\_SCLK: SPI Slave clock input, +1.8V\_ALW electrical level

SPIS\_MISO: SPI Slave Master In Slave Out, bi-directional data. +1.8V\_ALW electrical level SPIS\_MOSI: SPI Slave Master Out Slave In, bi-directional data. +1.8V\_ALW electrical level CHXPMIC\_EN: PMIC Enable override active high output signal, +1.8V\_ALW electrical level CHX\_RLYSWITCH: Platform level relay switch override active high output signal, +1.8V\_ALW electrical level CHXOKNOX0: Output OK signal of other EHL channel, +1.8V\_ALW electrical level CHXOKNOK1: Output NOK signal of other EHL channel, +1.8V\_ALW electrical level SPIM\_CS#: SPI Master chip select active low output, +1.8V\_ALW electrical level SPIM\_SCLK: SPI Master clock output, +1.8V\_ALW electrical level SPIM\_SCLK: SPI Master In Slave Out, bi-directional data. +1.8V\_ALW electrical level

In addition, the module does provide additional functional safety functions through following signals:

SPIM\_MOSI: SPI Master Master Out Slave In, bi-directional data. +1.8V\_ALW electrical level

THERMTRIP: Thermal Trip Output Signal, asserted by the processor to indicate a thermal trip event which may cause severe damage. Active high signal, +3.3V\_RUN electrical level with 10kp pull-up resistor

PROCHOT: Protection Output signal, asserted when the processor temperature monitoring sensor(s) detects that the processor has reached its maximum safe operating temperature. Active high signal, +3.3V\_ RUN electrical level with 10kΩ pull-up resistor

FUSA\_PWRFAIL#: FuSa Power Fail indication output signal. Active low signal, +3.3V\_ RUN electrical level with 10k0 pull-up resistor

CHXPMICEN: FuSa power input disabling signal, once asserted will disable 5V\_DSW input signal. Active high signal, with 100k $\Omega$  pull-down resistor

#### 3.2.1.19 Management pins

A set of signals are used by the module to communicate with carrier board for power management and indication status. Please refer to SMARC hardware specifications ver. 2.1 for more detailed informations.

The signals involved are:

VIN\_PWR\_BAD#: Power Bad indication signal from the Carrier Board, active low signal from a voltage detection circuit

CARRIER\_PWR\_ON: Power On. Command to the Carrier Board. Output is set to +1.8V\_ALW electrical level with a 10k pull-down resistor

CARRIER\_STBY#: Stand By command to the Carrier Board. Output, active low signal, is set to +1.8V\_ALW electrical level with a 10k pull-down resistor

RESET\_OUT#: General Purpose Reset. Output, active low signal, +1.8V\_ALW electrical level with a 10k pull-down resistor

RESET\_IN#: General Purpose Reset. Input, active low signal, +1.8\_ALW electrical level with a 10k pull-up resistor

POWER\_BTN#: Power Button. Input, active low signal, +1.8\_DSW electrical level with a 10k pull-up resistor

SLEEP#: Sleep indicator from Carrier board. Input, active low signal, +1.8\_ALW electrical level with a 10k pull-up resistor

LID#: LID Switch. Input, active low signal, +1.8\_ALW electrical level with a 10k pull-up resistor

BATLOW#: Battery Low indication signal from the Carrier Board. Input, active low signal, +1.8V\_DSW electrical level with a 10k pull-up resistor CHARGING#: Battery Charging Input Signal from the Carrier Board. Input, active low signal, +1.8V\_DSW electrical level with a 2k2 pull-up resistor CHARGER\_PRSNT#: Battery Charger Present input from the Carrier Board. Input, active low signal, +1.8V\_DSW electrical level with a 2k2 pull-up resistor TEST#: Signals used to invoke from Carrier Board specific test function(s). Input, active low signal, +1.8V\_DSW electrical level with a 10k pull-up resistor. At the moment, this function is not implemented and reserved for its use in the future.

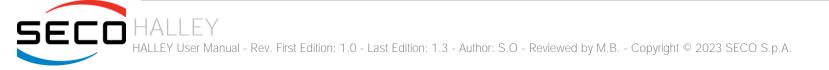
SMB\_ALERT\_1V8#: SM Bus Alert# (interrupt) signal. Input, active low signal, +1.8V\_DSW electrical level with a 2k2 pull-up resistor

#### 3.2.1.20 Boot Select

The following signals are active low and driven by open/ground circuitry on the carrier board.

BOOT\_SELO#: Boot Device Selection #0. Input, +1.8V\_ALW electrical level with a 10k pull-up resistor

BOOT\_SEL1#: Boot Device Selection #1. Input, +1.8V\_ALW electrical level with a 10k pull-up resistor


BOOT\_SEL2#: Boot Device Selection #2. Input, +1.8V\_ALW electrical level with a 10k pull-up resistor

FORCE\_RECOV#: Force recovery Mode. Input, +1.8\_ALW electrical level with a 10k pull-up resistor

# Chapter 4. BIOS SETUP

- Aptio setup Utility
- Main setup menu
- Advanced menu
- Chipset menu
- Security menu
- Boot menu
- Save & Exit menu





# 4.1 Aptio setup Utility

Basic setup of the board can be done using American Megatrends, Inc. "Aptio Setup Utility", that is stored inside an onboard SPI Serial Flash.

It is possible to access to Aptio Setup Utility by pressing the <ESC> key after System power up, during POST phase. On the splash screen that will appear, select "SCU" icon.

On each menu page, on left frame are shown all the options that can be configured.

Grayed-out options are only for information and cannot be configured.

Only options written in blue can be configured. Selected options are highlighted in white.

Right frame shows the key legend.

KEY LEGEND:

- ← / → Navigate between various setup screens (Main, Advanced, Security, Power, Boot...)
- ↑/↓ Select a setup item or a submenu
- + / + and keys allows to change the field value of highlighted menu item
- <F1> The <F1> key allows displaying the General Help screen.
- <F2> Previous Values

<F3> 
<F3> key allows loading Optimised Defaults for the board. After pressing <F3> BIOS Setup utility will request for a confirmation, before loading such default values. By pressing <ESC> key, this function will be aborted

<F4> <F4> key allows save any changes made and exit Setup. After pressing <F10> key, BIOS Setup utility will request for a confirmation, before saving and exiting. By pressing <ESC> key, this function will be aborted

<ESC> <= Sc> key allows discarding any changes made and exit the Setup. After pressing <ESC> key, BIOS Setup utility will request for a confirmation, before discarding the changes. By pressing <Cancel> key, this function will be aborted

<ENTER> <Enter> key allows to display or change the setup option listed for a particular setup item. The <Enter> key can also allow displaying the setup sub-screens.



# 4.2 Main setup menu

When entering the Setup Utility, the first screen shown is the Main setup screen. It is always possible to return to the Main setup screen by selecting the Main tab.

In this screen, are shown details regarding BIOS version, Processor type, Bus Speed and memory configuration.

Three options, that are found at the end of list of details, can be configured, Language, Date and Time.

# 4.2.1 System Language / System Date / System Time

Entering System Language will list the available languages for the Setup Utility.

To change the system time and date Highlight System Time or System Date using the <Arrow> keys. Enter new values directly through the keyboard, or using + / - keys to increase / reduce displayed values. Press the <Enter> key to move between fields. The date must be entered in MM/DD/YY format. The time is entered in HH:MM:SS format.

Note: The time is in 24-hour format. For example, 5:30 A.M. appears as 05:30:00, and 5:30 P.M. as 17:30:00.

The system date is in the format mm/dd/yyyy.

# 4.3 Advanced menu

| Menu Item                          | Options     | Description                                                                              |
|------------------------------------|-------------|------------------------------------------------------------------------------------------|
| CPU Configuration                  | See submenu | CPU Configuration Parameters                                                             |
| Power & Performance                | See submenu | Power & Performance Options                                                              |
| PCH-FW Configuration               | See submenu | Configure Management Engine Technology Parameters                                        |
| Intel® Time Coordinated Computing  | See submenu | Intel® Time Coordinated Computing (Intel® TCC) options                                   |
| Trusted Computing                  | See submenu | Trusted Computing Settings                                                               |
| ACPI Settings                      | See submenu | System ACPI parameters                                                                   |
| S5 RTC Wake Settings               |             | Enable system to wake from S5 using RTC alarm> Enable/Disable System wake on alarm event |
| Serial Port Console Redirection    | See submenu | Serial Port Console Redirection                                                          |
| AMI Graphic Output Protocol Policy | See submenu | User Selected Monitor Output by Graphic Output protocol                                  |
| USB Configuration                  | See submenu | USB Configuration Parameters                                                             |
| Network Stack Configuration        | See submenu | Network Stack Settings                                                                   |
| NVMe Configuration                 | See submenu | NVMe Device Options Settings                                                             |
| SDIO Configuration                 | See submenu | SDIO Configuration Parameters                                                            |
| SMBIOS Information                 |             | SMBIOS Information                                                                       |
| Main Thermal Configuration         | See submenu | Main Thermal Configuration                                                               |
| LVDS Configuration                 | See submenu | LVDS Configuration                                                                       |
| Embedded Controller                | See submenu | Embedded Controller                                                                      |
|                                    |             |                                                                                          |
| RAM Disk Configuration             | See submenu | Add/remove RAM disks                                                                     |
| User Password Management           |             | Handle user's password                                                                   |
|                                    |             |                                                                                          |
| Driver Health                      |             | Health Status for the Drivers/Controllers                                                |

# 4.3.1 CPU Configuration

| Menu Item                             | Options                             | Description                                                                                             |
|---------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|
| CPU Configuration                     |                                     | Shows board's specific SoC information                                                                  |
| CPU Flex Ratio Override               | Disabled / Enabled                  | Enable/Disable CPU Flex Ratio Programming                                                               |
| CPU Flex Ratio Settings               | [163]                               | This value must be between Max Efficiency Ratio (LFM) and Maximum non-turbo ratio set by Hardware (HFM) |
| Hardware Prefetcher                   | Disabled / Enabled                  | To turn on/off the MLC streamer prefetcher                                                              |
| Intel (VMX) Virtualization Technology | Disabled / Enabled                  | When enabled, a VMM can utilize the additional hardware capabilities provided by Vanderpool Technology  |
| PECI                                  | Disabled / Enabled                  | Enable/Disable PECI                                                                                     |
| Active Processor Cores                | All<br>1<br>2<br>3                  | Number of Cores to enable in each processor package                                                     |
| BIST                                  | Disabled / Enabled                  | Enable/Disable BIST (Built-In Self Test) on reset                                                       |
| AP threads Idle Manner                | HALT Loop<br>MWAIT Loop<br>RUN Loop | AP threads Idle Manner for waiting signal to run                                                        |
| AES                                   | Disabled / Enabled                  | Enable/Disable AES (Advanced Encryption Standard)                                                       |
| MachineCheck                          | Disabled / Enabled                  | Enable/Disable MachineCheck                                                                             |
| MonitorWait                           | Disabled / Enabled                  | Enable/Disable MonitorWait (MWAIT)                                                                      |
| CPU SMM Enhancement                   | See Submenu                         | CPU SMM Enhancement                                                                                     |
| AC Split Lock                         | Disabled / Enabled                  | Enable/Disable AC Split Lock                                                                            |

# 4.3.2 Power & Performance

| Menu Item                      | Options     | Description                            |
|--------------------------------|-------------|----------------------------------------|
| CPU - Power Management Control | See submenu | CPU – Power Management Control Options |
| GT - Power Management Control  | See submenu | GT – Power Management Control Options  |



# 4.3.2.1 CPU - Power Management Control

| Menu Item                     | Options                                                                                | Description                                                                                                                                                                                                                                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boot performance mode         | Max Battery<br>Max Non-Turbo<br>Performance<br>Turbo Performance                       | Select the performance state that the BIOS will set starting from reset vector                                                                                                                                                                                                                            |
| Intel® SpeedStep (tm)         | Enabled / Disabled                                                                     | Allows more than two frequencies ranges to be supported                                                                                                                                                                                                                                                   |
| Race to Halt (RTH)            | Enabled / Disabled                                                                     | Enable/Disable Race to Halt feature. RTH will dynamically increase CPU frequency in order to enter pkg C-<br>state faster to reduce overall power. (RTH is controlled through MSR 1FC bit 20)                                                                                                             |
| Intel® Speed Shift Technology | Enabled / Disabled                                                                     | Enable/Disable Intel® Speed Shift Technology support. Enabling will expose the CPPC v2 interface to allow for hardware controlled P-states                                                                                                                                                                |
| HwP Autonomous EPP Grouping   | Enabled / Disabled                                                                     | Enable EPP grouping (default bit 29 =0, command 0x11). Autonomous will request the same values for all cores with same EPP. Disable EPP grouping (Bit 29 =1, command 0x11) autonomous will not necessarily request same values for all cores with same EPP                                                |
| EPB override over PECI        | Enabled / Disabled                                                                     | Enable/Disable EPB override over PECI. Enable by sending pcode command 0x2b, subcommand 0x3 to 1. This will allow OOB EPB PECI override control                                                                                                                                                           |
| HwP fast MSR Support          | Enabled / Disabled                                                                     | Enable/Disable HwP Fast MSR Support for IA32_HWP_REQUEST MSR                                                                                                                                                                                                                                              |
| HDC Control                   | Enabled / Disabled                                                                     | This option allows HDC configuration.<br>Disabled: Disable HDC<br>Enabled: Can be enabled by OS if OS native support is available                                                                                                                                                                         |
| View/Configure Turbo Options  | See Submenu                                                                            | View/Configure Turbo Options                                                                                                                                                                                                                                                                              |
| CPU VR Settings               | See Submenu                                                                            | CPU VR Settings                                                                                                                                                                                                                                                                                           |
| Platform PL1 Enable           | Enabled / Disabled                                                                     | Enable/Disable Platform Power Limit 1 programming. If this option is enabled, it activates the PL1 value to be used by the processor to limit the average power of given time window                                                                                                                      |
| Platform PL1 Power            | [04095875]                                                                             | Platform Power Limit 1 Power in Milli Watts. BIOS will round to the nearest 1/8W when programming. Any value can be programmed between Max and Min Power Limits (specified by PACKAGE_POWER_SKU_MSR). For 12.50W, enter 12500. This setting will act as the new PL1 value for the Package RAPL algorithm. |
| Platform PL1Time Window       | 0 / 1 / 2 / 3 / 4 / 5 / 6 /<br>7 / 8 / 10 / 12 / 14 / 16<br>/ 20 / 24 / 28 / 32 / 40 / | Platform Power Limit 1 Time Window value in seconds. The value may vary from 0 to 128. 0 = default value. Indicates the time window over which Platform TDP value should be maintained                                                                                                                    |



|                                                                                                                           | 48 / 56 / 64 / 80 / 96 /<br>112 / 128                                                   |                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Platform PL2 Enable                                                                                                       | Enabled / Disabled                                                                      | Enable/Disable Platform Power Limit 2 programming. If this option is enabled, BIOS will program the default values for Platform Limit 2                                                                                                                                                                   |
| Platform PL2 Power                                                                                                        | [04095875]                                                                              | Platform Power Limit 2 Power in Milli Watts. BIOS will round to the nearest 1/8W when programming. Any value can be programmed between Max and Min Power Limits (specified by PACKAGE_POWER_SKU_MSR). For 12.50W, enter 12500. This setting will act as the new PL2 value for the Package RAPL algorithm. |
| Power Limit 4 Override                                                                                                    | Enabled / Disabled                                                                      | Enable/Disable Power Limit 4 override. If this option is disabled, BIOS will leave the default values for Poer Limit 4.                                                                                                                                                                                   |
| Power Limit 4                                                                                                             | [04095875]                                                                              | Platform Power Limit 4 in Milli Watts. BIOS will round to the nearest 1/8W when programming. For 12.50W, enter 12500. If the value is 0, BIOS leaves default value                                                                                                                                        |
| Power Limit 4 Lock                                                                                                        | Enabled / Disabled                                                                      | Power Limit 4 MSR 601h Lock. When enabled PL4 configurations are locked during OS. When disabled PL4 configuration can be changed during OS                                                                                                                                                               |
| C states                                                                                                                  | Enabled / Disabled                                                                      | Enable/Disable CPU Power Management. Allows CPU to go to C states when it's not 100% utilized                                                                                                                                                                                                             |
| Enhanced C-states                                                                                                         | Enabled / Disabled                                                                      | Enable/Disable C1E. When enabled, CPU will switch to minimum speed when all cores enter C-state                                                                                                                                                                                                           |
| C-State Auto Demotion                                                                                                     | Disabled / C1                                                                           | Configure C-State Auto Demotion                                                                                                                                                                                                                                                                           |
| C-State Un-demotion                                                                                                       | Disabled / C1                                                                           | Configure C-State Un-demotion                                                                                                                                                                                                                                                                             |
| Package C-State Demotion                                                                                                  | Enabled / Disabled                                                                      | Package C-State Demotion                                                                                                                                                                                                                                                                                  |
| Package C-State Un-demotion                                                                                               | Enabled / Disabled                                                                      | Package C-State Un-demotion                                                                                                                                                                                                                                                                               |
| CState Pre-Wake                                                                                                           | Enabled / Disabled                                                                      | Disable – Sets bit 30 of POWER_CTL MSR (0x1FC) to 1 to disable the Cstate Pre-Wake                                                                                                                                                                                                                        |
| IO MWAIT Redirection                                                                                                      | Enabled / Disabled                                                                      | When set, will map IO_read instructions sent to IO registers.<br>PMG_IO_BASE_ADDRBASE+offset to MWAIT (offset)                                                                                                                                                                                            |
| Package C State Limit                                                                                                     | C0/C1 / C2 / C3 / C6 /<br>C7 / C7S / C8 / C9 /<br>C10 / Cpu Default / Auto              | Maximum Package C State Limit Setting.<br>Cpu Default: Leaves to factory default value<br>Auto: Intializes to deepest available Package C State Limit                                                                                                                                                     |
| C6/C7 Short Latency Control (MSR<br>0x60B)<br>C6/C7 Long Latency Control (MSR<br>0x60C)<br>C8 Latency Control (MSR 0x633) | Time Unit (ns):<br>1 / 32 / 1024 / 32768 /<br>1048576 / 33554432<br>Latency:<br>[01023] | Time Unit: Unit of measurement for IRTL value – bits [12:10]<br>Latency: Interrupt Response Time Limit value – bits [9:0], Enter 0-1023                                                                                                                                                                   |

| C9 Latency Control (MSR 0x634)<br>C10 Latency Control (MSR 0x635) |                                                           |                                                                                                       |
|-------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Thermal Monitor                                                   | Enabled / Disabled                                        | Enable/Disable Thermal Monitor                                                                        |
| Interrupt Redirection Mode Selection                              | Fixed Priority<br>Round robin<br>Hash Vector<br>No Change | Interrupt Redirection Mode<br>Select for logical Interrupts                                           |
| Timed MWAIT                                                       | Enabled / Disabled                                        | Enable/Disable Timed MWAIT Support                                                                    |
| Custom P-state Table                                              |                                                           | Add Custom P-state Table> Sets the number of custom P-states. At least 2 states must be present       |
| EC Turbo Control Mode                                             | Enabled / Disabled                                        | Enable/Disable EC Turbo Control mode                                                                  |
| AC Brick Capacity                                                 | 90W AC Brick<br>65W AC Brick<br>75W AC Brick              | Specify the AC Brick capacity                                                                         |
| EC Polling Period                                                 | [1255]                                                    | Count 1 to 255 for a range of 10ms to 2.55 seconds (1 count = 10ms)                                   |
| EC Guard Band Value                                               | [120]                                                     | Count 1 to 20 for a range of 1 Watt to 20 Watts                                                       |
| EC Algorithm Selection                                            | [110]                                                     | Count 1 to 10 for Algorithm Selection                                                                 |
| Energy Performance Gain                                           | Enabled / Disabled                                        | Enable/Disable Energy Performance Gain                                                                |
| EPG DIMM Idd3N                                                    | 26 (default)                                              | Active standby current (Idd3N) in milliamps from datasheet. Must be calculated on a per DIMM basis    |
| EPG DIMM Idd3P                                                    | 11 (default)                                              | Active power-down current (Idd3P) in milliamps from datasheet. Must be calculated on a per DIMM basis |
| CPU Lock Configuration                                            | See submenu                                               | CPU Lock Configuration                                                                                |

# 4.3.2.1.1 View/Configure Turbo Options

| Menu Item                    | Options            | Description                                                                                                                                                                                                                                                                                 |
|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Turbo Settings       |                    | Shows cores' specific Turbo information                                                                                                                                                                                                                                                     |
| Energy Efficient P-state     | Enabled / Disabled | Enable/Disable Energy Efficient P-state feature. When set to 0, will disable access to<br>ENERGY_PERFORMANCE_BIAS MSR and CPUID Function 6 ECX[3] will read 0 indicating no support for<br>Energy Efficient policy setting. When set to 1 will enable access to ENERGY_PERFORMANCE_BIAS MSR |
| Package Power Limit MSR Lock | Enabled / Disabled | Enable/Disable locking of Package Power Limit settings. When enabled, PACKAGE_POWER_LIMIT MSR will<br>be locked and a reset will be required to unlock the register                                                                                                                         |



| Power Limit 1 Override      | Enabled / Disabled | Enable/Disable Power Limit 1 override. If this option is disabled, BIOS will program the default values for Power Limit 1 and Power Limit 1 Time Window.                                                                                                                                                                                                            |
|-----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Limit 1               | [04095875]         | Platform Power Limit 1 in Milli Watts. BIOS will round to the nearest 1/8W when programming. 0 = no custom override. For 12.50W, enter 12500. Overclocking SKU: Value must be between Max and Min Power Limits (specified by PACKAGE_POWER_SKU_MSR). Other SKUs: This value must be between Min Power Limit and TDP Limit. If value is 0, BIOS leaves default value |
| Power Limit 1 Time Window   | Enabled / Disabled | Platform Power Limit 1 Time Window value in seconds. The value may vary from 0 to 128. 0 = default value. Indicates the time window over which Platform TDP value should be maintained                                                                                                                                                                              |
| Power Limit 2 Override      | Enabled / Disabled | Enable/Disable Power Limit 1 override. If this option is disabled, BIOS will program the default values for Power Limit 2                                                                                                                                                                                                                                           |
| Power Limit 2               | [04095875]         | Platform Power Limit 2 in Milli Watts. BIOS will round to the nearest 1/8W when programming. If the value is 0, BIOS will program this value as 1.25*TDP. For 12.50W, enter 12500. Processor applies policies such that the package power does not exceed this limit                                                                                                |
| 1-Core Ratio Limit Override | [083]              | 1-Core Ratio Limit with range 0 to 83. The Minimum range may vary between Processors. This 1-Core Ratio Limit must be grater than or equal to 2-Core Ratio Limit, 3-Core Ratio Limit, 4-Core Ratio Limit                                                                                                                                                            |
| 2-Core Ratio Limit Override | [083]              | 2-Core Ratio Limit with range 0 to 83. The Minimum range may vary between Processors. This 2-Core Ratio Limit must be less than or equal to 1-Core Ratio Limit                                                                                                                                                                                                      |
| 3-Core Ratio Limit Override | [083]              | 3-Core Ratio Limit with range 0 to 83. The Minimum range may vary between Processors. This 3-Core Ratio Limit must be less than or equal to 1-Core Ratio Limit                                                                                                                                                                                                      |
| 4-Core Ratio Limit Override | [083]              | 4-Core Ratio Limit with range 0 to 83. The Minimum range may vary between Processors. This 4-Core Ratio Limit must be less than or equal to 1-Core Ratio Limit                                                                                                                                                                                                      |
| Energy Efficient Turbo      | Enabled / Disabled | Enable/Disable Energy Efficient Turbo Feature. This feature will opportunistically lower the turbo frequency to increase efficiency. Recommended only to disable in overclocking situations where turbo frequency must remain constant. Otherwise, leave enabled.                                                                                                   |
|                             |                    |                                                                                                                                                                                                                                                                                                                                                                     |

# 4.3.2.1.2 CPU VR Settings

| Menu Item   | Options  | Description                                                                                                                        |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------|
| PSYS Slope  | [0200]   | PSYS Slope defined in 1/100 increments. Range is 0-200. For a 1.25 slope, enter 125. 0 = AUTO. Uses BIOS VR mailbox command 0x9    |
| PSYS Offset | [063999] | PSYS Offset defined in 1/1000 increments. Range is 0-63999. For an offset of 25.348, enter 25348. Uses BIOS VR mailbox command 0x9 |
| PSYS Prefix | + / -    | Sets the offset value as positive or negative                                                                                      |

| PSYS Pmax Power         | [08192]     | PSYS Pmax power, defined in 1/8 Watt increments. Range 0-8192. For a Pmax of 125W, enter 1000. 0 = AUTO. Uses BIOS VR mailbox command 0xB |
|-------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Acoustic Noise Settings | See submenu | Configure Acoustic Noise Settings for IA, GT and SA domains                                                                               |
| VccIn VR Settings       | See submenu | VccIn VR Settings                                                                                                                         |
| RFI Settings            | See submenu | RFI Settings                                                                                                                              |

#### 4.3.2.1.2.1 Acoustic Noise Settings

| Menu Item                                      | Options                               | Description                                                                                                                                                                                           |
|------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acoustic Noise Mitigation                      | Enabled / Disabled                    | Enabling this option will help mitigate acoustic noise on certain SKUs when the CPU is in deeper C state                                                                                              |
| Disable Fast PKG C State Ramp for VccIn Domain | FALSE / TRUE                          | This option needs to be configured to reduce acoustic noise during deeper C state. FALSE: Don't disable Fast ramp during deeper C state; TRUE: Disable Fast ramp during deeper C state                |
| Slow Slew Rate for VccIn Domain                | Fast/2<br>Fast/4<br>Fast/8<br>Fast/16 | Set VR VccIn Slow Slew Rate for Deep Package C state ramp time; Slow slew rate equals to Fast divided by number, the number is 2, 4, 8, 16 to slow down the slew rate to help minimize acoustic noise |

# 4.3.2.1.2.2 VccIn VR Settings

| Menu Item             | Options            | Description                                                                                                                                                                |
|-----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VR Config Enable      | Enabled / Disabled | VR Config Enable                                                                                                                                                           |
| AC Loadline           | [06249]            | AC Loadline defined in 1/100 mOhms. A value of 100 = 1.00 mOhm, and 1255 = 12.55 mOhm. Range is 0-6249 (0-62.49 mOhms). 0 = AUTO/HW default. Uses BIOS mailbox command 0x2 |
| DC Loadline           | [06249]            | DC Loadline defined in 1/100 mOhms. A value of 100 = 1.00 mOhm, and 1255 = 12.55 mOhm. Range is 0-6249 (0-62.49 mOhms). 0 = AUTO/HW default. Uses BIOS mailbox command 0x2 |
| PS Current Threshold1 | [0512]             | PS Current Threashold1, defined in 1/4 A increments. A value of 400 = 100A. Range 0-512, which translates to 0-128A. 0 = AUTO. Uses BIOS VR mailbox command 0x3            |
| PS Current Threshold2 | [0512]             | PS Current Threashold2, defined in 1/4 A increments. A value of 400 = 100A. Range 0-512, which translates to 0-128A. 0 = AUTO. Uses BIOS VR mailbox command 0x3            |
| PS Current Threshold3 | [0512]             | PS Current Threashold3, defined in 1/4 A increments. A value of 400 = 100A. Range 0-512, which translates to 0-128A. 0 = AUTO. Uses BIOS VR mailbox command 0x3            |



| PS3 Enable        | Enabled / Disabled | PS3 Enable/Disable. 0 – Disabled, 1 – Enabled. Uses BIOS VR mailbox command 0x3                                                                                                                                                                   |
|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PS4 Enable        | Enabled / Disabled | PS4 Enable/Disable. 0 – Disabled, 1 – Enabled. Uses BIOS VR mailbox command 0x3                                                                                                                                                                   |
| IMON Slope        | [0200]             | IMON Slope defined in 1/100 increments. Range is 0-200. For a 1.25 slope, enter 125. 0 = AUTO. Uses BIOS VR mailbox command $0x4$                                                                                                                 |
| IMON Offset       | [063999]           | IMON Offset defined in 1/1000 increments. Range is 0-63999. For an offset of 25.348, enter 25348. Uses BIOS VR mailbox command 0x4                                                                                                                |
| IMON Prefix       | + / -              | Sets the offset value as positive or negative                                                                                                                                                                                                     |
| VR Current Limit  | [0512]             | Voltage Regulator Current Limit (Icc Max). This value represents the Maximum instantaneous current allowed at any given time. The value is represented in 1/4 A increments. A value of 400 = 100A. 0 means AUTO. Uses BIOS VR mailbox command 0x6 |
| TDC Enable        | Enabled / Disabled | TDC Enable. 0 – Disable, 1 – Enable                                                                                                                                                                                                               |
| TDC Current Limit | [032767]           | TDC Current Limit, defined in 1/8 increments. Range 0-32767. For a TDC Current Limit of 125A, enter 1000.<br>0 = 0 Amps. Uses BIOS VR mailbox command 0x1A                                                                                        |
| TDC Time Window   | [18, 10]           | TDC Time Window, value in milliseconds. 1ms is default. Range from 1ms to 1ms, except for 9ms. 9ms has no valid encoding in the MSR definition                                                                                                    |
| TDC Lock          | Enabled / Disabled | TDC Lock                                                                                                                                                                                                                                          |

### 4.3.2.1.2.3 RFI Settings

| Menu Item             | Options    | Description                                                                                                                                                                                     |
|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFI Current Frequency |            | Shows current RFI Frequency setting                                                                                                                                                             |
| RFI Frequency         | [13001600] | Set desired RFI Frequency, in increments of 100KHz. The RFI Frequency Range is between 130 MHz to 160 MHz, and the default h/w frequency is 139.6 MHz. For a frequency of 139.6 MHz, enter 1396 |
| RFI Spread Spectrum   | [0100]     | Adjust the Spread Spectrum, in increments of 0.1%. For a spread of 5.0%, enter 50. The value of 0 will disable the FIVR FRI Spread Spectrum, Range 0-100 (0.0% to 10.0%)                        |

#### 4.3.2.1.3 CPU Lock Configuration

| Menu Item         | Options            | Description                                                      |
|-------------------|--------------------|------------------------------------------------------------------|
| CFG Lock          | Enabled / Disabled | Configure MSR 0xE2[15], CFG Lock bit                             |
| Overclocking Lock | Enabled / Disabled | Enable/Disable Overclocking Lock (BIT 20) in FLEX_RATIO(194) MSR |

# 4.3.2.2 GT- Power Management Control

| Menu Item                  | Options                                                                             | Description                                                                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum GTT frequency      | Default Max Frequency /<br>100MHz /<br><i>List of 50MHz increments</i><br>/ 1200MHz | Maximum GT frequency limited by the user. Choose between 200MHz (RPN) and 400MHz (RPO). Value beyond the range will be clipped to min/max supported by SKU |
| Disable Turbo GT frequency | Enabled / Disabled                                                                  | Enabled: Disables Turbo GT frequency. Disabled: GT frequency is not limited                                                                                |

# 4.3.3 PCH-FW Configuration

| Menu Item                        | Options            | Description                                                                                                                              |
|----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| ME Firmware information          |                    | Shows ME Firmware specific information                                                                                                   |
| ME State                         | Enabled / Disabled | When Disabled ME will be put into ME Temporarily Disabled Mode                                                                           |
| ME Unconfig on RTC Clear         | Enabled / Disabled | When Disabled ME will not be unconfigured on RTC Clear                                                                                   |
| Comms Hub Support                | Enabled / Disabled | Enable/Disable support for Comms Hub                                                                                                     |
| JHI Support                      | Enabled / Disabled | Enable/Disable Intel® DAL Host Interface Service (JHI)                                                                                   |
| Core Bios Done Message           | Enabled / Disabled | Enable/Disable Core Bios Done message sent to ME                                                                                         |
| Firmware Update Configuration    | See submenu        | Configure Management Engine Technology Parameters                                                                                        |
| PTT Configuration                | See submenu        | Configure PTT                                                                                                                            |
| FIPS Configuration               | See submenu        | FIPS Mode help                                                                                                                           |
| ME Debug Configuration           | See submenu        | Configure ME debug options. NOTE: This menu is provided testing purposes. It is recommended to leave the options in their default states |
| Anti-Rollback SVN Configuration  | See submenu        | Configure Anti-Rollback SVN                                                                                                              |
| OEM Key Revocation Configuration | See submenu        | Configure OEM Key Revocation                                                                                                             |

# 4.3.3.1 Firmware Update Configuration

| Menu Item   | Options                                       | Description                                                              |
|-------------|-----------------------------------------------|--------------------------------------------------------------------------|
|             |                                               |                                                                          |
| SECO HALLEY | ,<br>anual - Poy First Edition: 1.0 - Last Ed | dition: 1.3 - Author: S.O - Reviewed by M.B Copyright © 2023 SECO S.p.A. |

HALLEY User Manual - Rev. First Edition: 1.0 - Last Edition: 1.3 - Author: S.O - Reviewed by M.B. - Copyright © 2023 SECO S.p.A.

| ME FW Image Re-Flash | Enabled / Disabled | Enable/Disable ME FW Image Re-Flash function |
|----------------------|--------------------|----------------------------------------------|
| FW Update            | Enabled / Disabled | Enable/Disable ME FW Update function         |

# 4.3.3.2 PTT Configuration

| Menu Item            | Options    | Description                                                                                                                                                              |
|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPM Device Selection | dTPM / PTT | Selects TPM device: PTT or dTPM. PTT – Enables PTT in SkuMgr dTPM 1.2 – Disables PTT in SkuMgr Warning ! PTT/dTPM will be disabled and all data saved on it will be lost |

# 4.3.3.3 FIPS Configuration

| Menu Item             | Options            | Description                          |
|-----------------------|--------------------|--------------------------------------|
| FIPS Mode Select      | Enabled / Disabled | FIPS Mode configuration              |
| FIPS Mode information |                    | Shows FIPS Mode specific information |

# 4.3.3.4 ME Debug Configuration

| Menu Item                     | Options            | Description                                                                                     |
|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------|
| HECI Timeous                  | Enabled / Disabled | Enable/Disable HECI Send/Receive Timeouts                                                       |
| Force ME DID Init Status      | Enabled / Disabled | Forces the DID Initialization Status value                                                      |
| CPU Replaces Polling Disable  | Enabled / Disabled | Setting this option disables CPU replacement polling loop                                       |
| ME DID Message                | Enabled / Disabled | Enable/Disable ME DID Message (disable will prevent the DID message from being sent)            |
| HECI Message check Disable    | Enabled / Disabled | Settings this option disables message check for Bios Boot Path when sending                     |
| MBP HOB Skip                  | Enabled / Disabled | Setting this option will skip MBP HOB                                                           |
| HECI2 Interface Communication | Enabled / Disabled | Adds and Removes HECI2 Device from PCI space                                                    |
| KT Device                     | Enabled / Disabled | Enable/Disable KT Device                                                                        |
| DOI3 Setting for HECI Disable | Enabled / Disabled | Setting this option disables setting DOI3 bit for all HECI devices                              |
| MCTP Broadcast Cycle          | Enabled / Disabled | Enable/Disable Management Component Transport Protocol Broadcast Cycle and Set PMT as Bus Owner |



#### 4.3.3.5 Anti-Rollback SVN Configuration

| Menu Item                                        | Options            | Description                                                                                                                                                                                       |
|--------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic HW-Enforced Anti-Rollback<br>SVN       | Enabled / Disabled | When enabled, hardware-enforced Anti-Rollback mechanism is automatically activated: once ME FW was successfully run on a platform, FW with lower ARB-SVN will be blocked from execution           |
| Set HW-Enforced Anti-Rollback for<br>Current SVN | Enabled / Disabled | Enable hardware-enforced Anti-Rollback mechanism for current ARB-SVN value. FW with lower ARB-SVN will be blocked from execution. The value will be restored to disable after the command is sent |

# 4.3.3.6 OEM Key Revocation Configuration

| Menu Item                    | Options            | Description                                                                |
|------------------------------|--------------------|----------------------------------------------------------------------------|
| Automatic OEM Key Revocation | Enabled / Disabled | When enabled, BIOS will automatically send HECI command to revoke OEM keys |
| Invoke OEM Key Revocation    | Enabled / Disabled | A HECI command will be sent to revoke OEM keys                             |

# 4.3.4 Intel® Time Coordinated Computing

| Menu Item                      | Options            | Description                                                                                                                                                                                                                  |
|--------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intel® TCC Mode                | Enabled / Disabled | Enables or Disables Intel® TCC mode. When enabled, this will modify system settings to improve real-time performance. The full list of settings and their current state are displayed below when Intel® TCC mode is enabled. |
| Software SRAM                  | Enabled / Disabled | Enables or Disables Software SRAM. Enable will allocate 1 way of LLC; if Cache Configuration subreagion is available, it will allocate based on the subregion.                                                               |
| Data Streams Optimizer         | Enabled / Disabled | Enables or Disables Data Streams Optimizers (DSO). Enable will utilize DSO Subregion to tune system. DSO settings supercede Intel® TCC Mode settings that overlap between the two.                                           |
| TCC Error Log                  | Enabled / Disabled | Enables or Disables TCC Error Log. Enable will record errors from TCC flow in memory.                                                                                                                                        |
| Intel® TCC Authentication Menu | See submenu        | Intel® TCC Authentication Menu options                                                                                                                                                                                       |
| IO Fabric Low Latency          | Enabled / Disabled | Enables or Disables IO Fabric Low Latency. This will turn off some power management in the PCH IO fabrics.<br>This option provides the most aggressive IO Fabric performance settings S3 state is not supported.             |
| GT CLOS                        | Enabled / Disabled | Enables or Disables Graphics Technology (GT) Class of Service. Enable will reduce Gfx LLC allocation to minimize impact of Gfx workload on LLC.                                                                              |
| RAPL PL 1 enable               |                    | Memory RAPL PL 1 settings                                                                                                                                                                                                    |

| RAPL PL 2 enable               |                            | Memory RAPL PL2 settings                                                                                                                                                                                                              |
|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.5 Trusted computing        |                            |                                                                                                                                                                                                                                       |
| Menu Item                      | Options                    | Description                                                                                                                                                                                                                           |
| Security Device Support        | Enabled / Disabled         | Enables or Disables BIOS support for security device. OS will not show the Security Device. TCG EFI protocol and INT1A interface will not be available. When enabled all the following items will be available.                       |
| SHA256 PCR Bank                | Enabled / Disabled         | Enables or Disables SHA256 PCR Bank                                                                                                                                                                                                   |
| SHA384 PCR Bank                | Enabled / Disabled         | Enables or Disables SHA384 PCR Bank                                                                                                                                                                                                   |
| SM3_256 PCR Bank               | Enabled / Disabled         | Enables or Disables SM3_256 PCR Bank                                                                                                                                                                                                  |
| Pending Operation              | None / TPM Clear           | Schedule an Operation for the Security Device. NTE: your Computer will reboot during restart in order to change State of Security Device.                                                                                             |
| Platform Hierarchy             | Enabled / Disabled         | Enables or Disabled the Platform Hierarchy                                                                                                                                                                                            |
| Storage Hierarchy              | Enabled / Disabled         | Enables or Disabled the Storage Hierarchy                                                                                                                                                                                             |
| Endorsement Hierarchy          | Enabled / Disabled         | Enables or Disabled the Endorsement Hierarchy                                                                                                                                                                                         |
| Physical Presence Spec Version | 1.2 / 1.3                  | Select to tell OS to support PPI Spec Version 1.2 or 1.3. Please note that some HCK tests might not support 1.3                                                                                                                       |
| Device Select                  | Auto<br>TPM 1.2<br>TPM 2.0 | TPM 1.2 will restrict the support to TPM 1.2 devices only, TPM 2.0 will restrict the support to TPM 2.0 devices only, Auto will support both with the default set to TPM 2.0 devices if not found, TPM 1.2 devices will be enumerated |

# 4.3.6 ACPI Settings

| Menu Item                      | Options                                 | Description                                                                                                                 |
|--------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Enable ACPI Auto Configuration | Disabled / Enabled                      | Enables or Disables BIOS ACPI Auto Configuration. The following menu items will appear only when this menu item is Disabled |
| Enable Hibernation             | Disabled / Enabled                      | Enables or disables system ability to Hybernate (OS/S4 Sleep State). This option may be not effective with some OS.         |
| ACPI Sleep State               | Suspend Disabled<br>S3 (Suspend to RAM) | Select the highest ACPI Sleep state the system will enter when the SUSPEND button is pressed.                               |
| Lock Legacy resources          | Disabled / Enabled                      | Enables or Disables Lock of Legacy resources                                                                                |

# 4.3.7 Serial Port Console Redirection

| Menu Item                          | Options                                  | Description                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СОМх                               |                                          |                                                                                                                                                                                                                                                                                                                                                |
| Console redirections               | Enabled / Disabled                       | Enables or Disables the Console redirection. When enabled the following item will appear                                                                                                                                                                                                                                                       |
| Console Redirection Settings       | See Submenu                              | The settings specifies how the host and the remote computer (which the user is using) will exchange data.<br>Both computers should have the same or compatible settings                                                                                                                                                                        |
| Console redirections EMS           | Enabled / Disabled                       | Enables or Disables the Console redirection. When enabled the following item will appear                                                                                                                                                                                                                                                       |
| Console Redirection Settings       | See Submenu                              | The settings specifies how the host and the remote computer (which the user is using) will exchange data.<br>Both computers should have the same or compatible settings                                                                                                                                                                        |
| 4.3.7.1 Console Redirection Settin | ngs (COMx)                               |                                                                                                                                                                                                                                                                                                                                                |
| Menu Item                          | Options                                  | Description                                                                                                                                                                                                                                                                                                                                    |
| Terminal Type                      | VT100<br>VT100+<br>VT-UTF8<br>ANSI       | Emulation:<br>ANSI: Extended ASCII Char set.<br>VT100: ASCII Char set.<br>VT100+: extends VT100 to support colour, function keys, etc.<br>VT-UTF8: uses UTF8 encoding to map Unicode chars onto 1 or more bytes                                                                                                                                |
| Bits per second                    | 9600 / 19200 / 38400 /<br>57600 / 115200 | Select Serial port Transmission Speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.                                                                                                                                                                                                              |
| Data bits                          | 7 / 8                                    | Set Console Redirection data bits                                                                                                                                                                                                                                                                                                              |
| Parity                             | None<br>Even<br>Odd<br>Mark<br>Space     | A parity bit can be sent with the data bits to detect some transmission errors.<br>Even: parity bit is 0 if the number of 1s in the data bits is even.<br>Odd: parity bit is 0 if the number of 1s in the data bits is odd.<br>Mark: parity bit is always 1.<br>Space: parity bit is always 0. Mark and Space do not allow for error detection |
| Stop bits                          | 1/2                                      | Stop bits indicate the end of a serial data packet. (A start bit indicates the beginning). The standard setting is 1 stop bit. Communication with slow devices may require more than 1 stop bit                                                                                                                                                |
| Flow Control                       | None<br>Hardware RTS/CTS                 | Flow Control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to re-start the flow. Hardware flow control uses RTS# / CTS# lines to send the start / stop signals.                |
| VT-UTF8 Combo Key Support          | Enabled / Disabled                       | Enable VT-UTF8 Combination Key Support for ANSI/VT100 terminals                                                                                                                                                                                                                                                                                |

| Recorder Mode     | Enabled / Disabled                                      | When this mode is enabled, only text will be sent. This is to capture Terminal data. |
|-------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
| Resolution 100x31 | Enabled / Disabled                                      | Enables or disables extended terminal resolution                                     |
| Putty Keypad      | VT100 / Intel Linux /<br>XTERMR6 / SCO /<br>ESCN /VT400 | Select FunctionKey and KeyPad on Putty                                               |

# 4.3.7.2 Console Redirection Settings (EMS)

| Menu Item             | Options                                       | Description                                                                                                                                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Out-of-Band Mgmt Port | COM0<br>COM1                                  | Microsoft Windows Emergency Management Services (EMS) allows for remote management of a Windows Server OS through a serial port                                                                                                                                                                                   |
| Terminal Type EMS     | VT100<br>VT100+<br>VT-UTF8<br>ANSI            | VT-UTF8 is the preferred terminal type for out-of-band management. The next best choice is VT100+ and then VT100. See above, in Console redirection Settings page, for more help with Terminal Type/Emulation                                                                                                     |
| Bits per second       | 9600 / 19200 /<br>57600 / 115200              | Select Serial port Transmission Speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.                                                                                                                                                                                 |
| Flow Control          | None<br>Hardware RTS/CTS<br>Software Xon/Xoff | Flow Control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a 'stop' signal can be sent to stop the data flow. Once the buffers are empty, a 'start' signal can be sent to re-start the flow. Hardware flow control uses two wires to send start/stop signals. |

# 4.3.8 AMI Graphic Output Protocol Policy

SECO

| Menu Item               | Options                                                       | Description                                                                      |
|-------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|
| Output Select           | List of available /<br>connected module's<br>video interfaces | Output Interface, this menu is visible when more than one interface is available |
| Brightness Settings     | 20/40/60/80/100/120/1<br>40/160/180/200/220/2<br>40/255       | Set GOP Brightness value                                                         |
| BIST Enable             | Enabled / Disabled                                            | Starts or stops the BIST on the integrated display panel                         |
| 4.3.9 USB Configuration |                                                               |                                                                                  |

Menu Item Options Description

| Legacy USB Support               | Enabled / Disabled /<br>Auto         | Enables Legacy USB Support. AUTO Option disables legacy support if no USB devices are connected.<br>DISABLE option will keep USB devices available only for EFI applications.                                                    |
|----------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XHCI hand-off                    | Enabled/ Disabled                    | This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.                                                                                                         |
| USB Mass Storage Driver Support  | Enabled/ Disabled                    | Enables or disables USB Mass Storage Driver Support                                                                                                                                                                              |
| USB Transfer time-out            | 1 sec / 5 sec / 10 sec /<br>20 sec   | Sets the time-out value for Control, Bulk and Interrupt transfers                                                                                                                                                                |
| Device reset time-out            | 10 sec / 20 sec / 30<br>sec / 40 sec | USB mass storage device Start Unit command time-out                                                                                                                                                                              |
| Device power-up delay            | Auto / Manual                        | Sets the maximum time that the device will take before it properly reports itself to the Host controller. 'Auto' uses the default vale (for a Root port it is 100ms, for a Hub port the delay is taken from the Hub descriptor). |
| Device power-up delay in seconds | [140]                                | Delay range in seconds, in one second increment, visible when delay is set to Manual                                                                                                                                             |

# 4.3.10 Network Stack configuration

| Menu Item          | Options            | Description                                                                                        |
|--------------------|--------------------|----------------------------------------------------------------------------------------------------|
| Network Stack      | Enabled / Disabled | Enables or disables UEFI Network Stack. When enabled, following menu items will appear             |
| Ipv4 PXE Support   | Enabled / Disabled | Enables or disables IPV4 PXE Boot Support. If disabled, IPV4 PXE boot option will not be created   |
| Ipv4 HTTP Support  | Enabled / Disabled | Enables or disables IPV4 HTTP Boot Support. If disabled, IPV4 HTTP boot option will not be created |
| Ipv6 PXE Support   | Enabled / Disabled | Enables or disables IPV6 PXE Boot Support. If disabled, Ipv6 PXE boot option will not be created   |
| Ipv6 HTTP Support  | Enabled / Disabled | Enables or disables IPV6 HTTP Boot Support. If disabled, Ipv6 HTTP boot option will not be created |
| PXE boot wait time | [05]               | Wait time to press ESC key to abort the PXE boot                                                   |
| Media detect count | [150]              | Number of times that the presence of media will be checked                                         |

# 4.3.11 NVMe configuration

| Menu Item                  | Options | Description |
|----------------------------|---------|-------------|
| List of NVMe devices found |         |             |
| 4.3.12 SDIO configuration  |         |             |
| Menu Item                  | Options | Description |

SECO HALLEY HALLEY User Manual - Rev. First Edition: 1.0 - Last Edition: 1.3 - Author: S.O - Reviewed by M.B. - Copyright © 2023 SECO S.p.A.

| SDIO Access Mode           | Auto<br>ADMA<br>SDMA<br>PIO               | Auto Option: Access the SD Device in DMA mode if the controller supports it, otherwise in PIO Mode.<br>DMA Option: Access the SD Device in DMA mode<br>ADMA Option: Access the SD Device in Advanced DMA mode<br>PIO Option: Access the SD Device in PIO mode |
|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of SDIO devices found | Auto<br>Floppy<br>Forced FDD<br>Hard Disk | Mass storage device emulation type. 'Auto' enumerates devices less than 530Mb as floppies. Forced FDD option can be used to force HDD formatted drive to boot as FDD.                                                                                         |

# 4.3.13 Main Thermal Configuration

| Menu Item                           | Options                                                   | Description                                                                                                                     |
|-------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Critical Temperature (°C)           | 90 / 95 / 100 / 105 / 110 / 115<br>/ 117 / 119 / Disabled | Above this threshold, an ACPI aware OS performs a critical shut down. Allowed range is from 90°C to 119°C included or disabled. |
| Passive Cooling Temperature<br>(°C) | 80 / 85 / 90 / 95 / 100 / 105 /<br>107 / 109 / Disabled   | Above this threshold, an ACPI aware OS begins to lower the CPU speed. Allowed range is from 80 to 109 °C included or disabled.  |
| TC1                                 | 1 (default)                                               | Thermal Constant 1: part of the ACPI Passive Cooling Formula                                                                    |
| TC2                                 | 1 (default)                                               | Thermal Constant 2: part of the ACPI Passive Cooling Formula                                                                    |
| TSP (tenths of second)              | 5 (default)                                               | Period of temperature sampling when Passive Cooling                                                                             |

# 4.3.14 LVDS Configuration

| Menu Item      | Options                                                                                                                                                     | Description                                                                                                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LVDS interface | Enabled / Disabled                                                                                                                                          | Enables or Disables the LVDS interface. When enabled all the following parameters will appear                                                                                                  |
| Edid Mode      | External / Default / Custom                                                                                                                                 | Select the source (EDID, Extended Display Identification Data) to be used for the internal flat panel. Depending on the setting chosen, only some of the following option or none will appear. |
| EDID           | 640x480 / 800x480 / 800x600<br>/ 1024x600 / 1024x768 /<br>1280x720 / 1280x800 /<br>1280x1024 / 1366x768 /<br>1400x900 / 1600x900 /<br>1680x1050 / 1920x1080 | Only available when Edid Mode is set to "default". Select a software resolution (EDID settings) to be used for the internal flat panel.                                                        |
| Color Mode     | VESA 24bpp / JEIDA 24bpp /<br>18 bpp                                                                                                                        | Select the color depth of LVDS interface. For 24-bit color depth, it is possible to choose also the color mapping on LVDS channels, i.e. if it must be VESA-compatible or JEIDA compatible.    |

| Interface             | Single Channel / Dual Channel | Allows configuration of LVDS interface in Single or Dual channel mode |
|-----------------------|-------------------------------|-----------------------------------------------------------------------|
| DE Polarity           | Active High / Active Low      | Data Enable Polarity                                                  |
| V-Sync Polarity       | Negative / Positive           | Vertical Sync Polarity                                                |
| H-Sync Polarity       | Negative / Positive           | Horizontal Sync Polarity                                              |
| LVDS Advanced Options | See Submenu                   | LVDS Advanced Options Configurations                                  |
|                       |                               |                                                                       |

4.3.14.1 LVDS Advanced options

| Menu Item            | Options                                                                                                 | Description                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Spreading Depth      | No Spreading / 0.5% /<br>1.0% / 1.5% / 2.0% /<br>2.5%                                                   | Sets percentage of bandwidth of LVDS clock frequency for spreading spectrum                                                         |
| Output Swing         | 150 mV / 200 mV / 250<br>mV / 300 mV / 350 mV /<br>400 mV / 450 mV                                      | Sets the LVDS differential output swing                                                                                             |
| T3 Timing            | [0255]                                                                                                  | Minimum T3 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 10 (500ms)                            |
| T4 Timing            | [0255]                                                                                                  | Minimum T4 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 2 (100ms)                             |
| T12 Timing           | [0255]                                                                                                  | Minimum T12 timing of panel power sequence to enforce (expressed in units of 50ms). Default is 20 (1s)                              |
| T2 Delay             | Enabled / Disabled                                                                                      | When Enabled, T2 is delayed by 20ms ± 50%                                                                                           |
| T5 Delay             | Enabled / Disabled                                                                                      | When Enabled, T5 is delayed by 20ms $\pm$ 50%                                                                                       |
| P/N Pairs Swapping   | Enabled / Disabled                                                                                      | Enable or disable LVDS Differential pairs swapping (Positive 🗢 Negative)                                                            |
| Pairs Order Swapping | Enabled / Disabled                                                                                      | Enable or disable channel differential pairs order swapping (A $\Leftrightarrow$ D, B $\Leftrightarrow$ CLK, C $\Leftrightarrow$ C) |
| Bus Swapping         | Enabled / Disabled                                                                                      | Enable or disable Bus swapping (Odd ⇔ Even)                                                                                         |
| Firmware PLL         | 0: +/- 1.56%<br>1: +/- 3.12%<br>2: +/- 6.25%<br>3: +/- 12.5%<br>4: +/- 25%<br>5: +/- 50%<br>6: +/- 100% | Firmware PLL range                                                                                                                  |

SECO HALLEY HALLEY User Manual - Rev. First Edition: 1.0 - Last Edition: 1.3 - Author: S.O - Reviewed by M.B. - Copyright © 2023 SECO S.p.A.

#### 4.3.15 Embedded Controller

| Menu Item                       | Options                                                            | Description                                                                                                                                                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Embedded Controller information |                                                                    | Shows Embedded Controller specific information                                                                                                                                                                                                                                  |
| Power Fail Resume Type          | Always ON<br>Always OFF<br>Last State                              | Specify what state to go to when power is re-applied after a power failure (G3 state). If Batteryless Operation, the chipset always powers on after a power failure: Always OFF Resume Type or Last State when Last State was OFF will therefore require an immediate shutdown. |
| No C-MOS battery handling       | Enabled / Disabled                                                 | In systems with no C-MOS battery, the chipset always powers on after a power failure: Always OFF Resume Type or Last State when Last State was OFF will therefore require an immediate shutdown.                                                                                |
| LID_BTN# Configuration          | Force Open<br>Force Closed<br>Normal Polarity<br>Inverted Polarity | Configures the LID_BTN# signal as always open or closed, no matter the pin level, or configures the pin polarity: High = Open (Normal), Low = Open (Inverted)                                                                                                                   |
| LID_BTN# Wake Configuration     | No Wake<br>Only From S3<br>Wake From S3/S4/S5                      | Configures LID_BTN# wake capability (when not forced to Open or Closed). According to the pin configuration, when the LID is open it can cause a system wake from a sleep state.                                                                                                |
| OUT 80 serial redirection port  | None / 1 / 2 / 1+2                                                 | Select on which E.C. UART(s) to redirect OUT 80 (Post Codes)                                                                                                                                                                                                                    |
| Hardware Monitor                |                                                                    | Shows Monitored Hardware parameters and settings                                                                                                                                                                                                                                |
| Reset Causes Handling           | See Submenu                                                        | Reset Causes Handling                                                                                                                                                                                                                                                           |
| Super IO Configuration          | See Submenu                                                        | Super IO Configuration                                                                                                                                                                                                                                                          |
| External FAN/PWM Settings       | See Submenu                                                        | Visible when PWM/FAN Management is Enabled under SMARC Related Configuration                                                                                                                                                                                                    |
| Watchdog Configuration          |                                                                    | Configure the Watchdog Timer> Disables/Enables the Watchdog Timer Mechanism                                                                                                                                                                                                     |
| GPIO Configurations             | See Submenu                                                        | GPIO Configurations                                                                                                                                                                                                                                                             |
| MAC address(es) visualization   |                                                                    | MAC address(es) visualization                                                                                                                                                                                                                                                   |
| SMARC Related Configuration     | See Submenu                                                        | Configuration options related to SMARC standard                                                                                                                                                                                                                                 |
| USB Port Enabling               |                                                                    | USB Port enabling> Disables/Enables VBUS on carrier board for each USB Port                                                                                                                                                                                                     |
| 4.3.15.1 Reset Causes Handling  |                                                                    |                                                                                                                                                                                                                                                                                 |

| Menu Item            | Options | Description             |
|----------------------|---------|-------------------------|
| Reset Button Pressed |         | Happened / Not Happened |



| Clear from log      | Enabled / Disabled | If Enabled will require system reset |
|---------------------|--------------------|--------------------------------------|
| WDT Timeout Expired |                    | Happened / Not Happened              |
| Power Failure       |                    | Happened / Not Happened              |
| Clear from log      | Enabled / Disabled | If Enabled will require system reset |
| E.C. soft reset     |                    | Happened / Not Happened              |
| Clear from log      | Enabled / Disabled | If Enabled will require system reset |

#### 4.3.15.2 Super IO Configuration

| Menu Item     | Options                                                                                | Description                 |
|---------------|----------------------------------------------------------------------------------------|-----------------------------|
| Serial Port x | Enabled / Disabled                                                                     |                             |
| Address       | 0x3F8 / 0x3E8 / 0x2F8 /<br>0x2F0 / 0x2E8 / 0x2E0 /<br>0x2A8 / 0x2A0 / 0x288 /<br>0x280 | Serial Port IO Base Address |
| IRQ           | 3 / 4 / 5 / 6 / 7 / 10 / 11<br>/ 14 / 15                                               | Serial Port IRQ             |

## 4.3.15.3 External FAN/PWM Settings

| Menu Item                         | Options                                 | Description                                                                                                        |
|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| FAN_PWMOUT device type            | 3-WIRE FAN<br>4-WIRE FAN<br>Generic PWM | Specifies if FAN_PWMOUT is connected to a 3-wire or 4-wire FAN or to a generic PWM                                 |
| Automatic Temperature FAN Control | Enabled / Disabled                      | Disable/Enable Thermal Feed-back FAN Control                                                                       |
| FAN PWM Frequency                 | [160000]                                | Sets the frequency of the FAN_PWMOUT signal. Typical values are 100 for a 3-wire device and 20000 for a 4-wire one |
| FAN Duty Cycle (%)                | [0100]                                  | Sets the Duty Cycle of the FAN_PWMOUT signal                                                                       |
| 4.3.15.4 GPIO Configuration       |                                         |                                                                                                                    |

| Menu Item | Options | Description |
|-----------|---------|-------------|
| GPIOx     |         |             |

| Configuration | Input<br>Output Low<br>Output High | Configure pin as input or output with a fixed starting value. Last means no changes with respect to the last boot |
|---------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|               | Output Last                        |                                                                                                                   |

## 4.3.15.5 SMARC Related Configuration

| Menu Item          | Options            | Description                                                                 |
|--------------------|--------------------|-----------------------------------------------------------------------------|
| HD Audio Reset     | Enabled / Disabled | Enabling this option GPIO4 will be used for HD Audio Reset. GPIO4> HDA_RST# |
| PWM/FAN Management | Enabled / Disabled | Enabling this option GPIO5 will be used for PWM/FAN Output. GPIO5> PWM_OUT  |
| Tachometer         | Enabled / Disabled | Enabling this option GPIO6 will be used for Tachometer Input. GPIO6> TACHIN |

## 4.3.16 RAM Disk Configuration

| Menu Item                   | Options                       | Description                                                                           |
|-----------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Disk Memory Type:           | Boot Service Data<br>Reserved | Specifies type of memory to use from available memory pool in system to create a disk |
| Create Raw                  |                               | Create a raw RAM disk                                                                 |
| Create from file            |                               | Create a RAM disk from a given file                                                   |
| Remove selected RAM disk(s) |                               | Remove selected RAM disks                                                             |



# 4.4 Chipset menu

| Menu Item                       | Options     | Description                  |
|---------------------------------|-------------|------------------------------|
| System Agent (SA) Configuration | See Submenu | System Agent (SA) Parameters |
| PCH-IO Configuration            | See Submenu | PCH Parameters               |

#### 4.4.1 System Agent (SA) Configuration

| Menu Item              | Options     | Description                     |
|------------------------|-------------|---------------------------------|
| Memory Configuration   |             | Memory Configuration Parameters |
| Graphics Configuration | See Submenu | Graphics Configuration          |
| Graphics Configuration | See Submenu | Graphics Configuration          |

4.4.1.1 Graphics Configuration

| Menu Item                               | Options                                                                                                          | Description                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Graphics Turbo IMON Current             | [1431]                                                                                                           | Graphics Turbo IMON Current values supported (14 – 31)                                        |
| Skip Scanning of External Gfx Card      | Enabled / Disabled                                                                                               | If Enabled, it will not scan for External Gfx Card on PEG and PCH PCIE ports                  |
| Primary Display                         | Auto / IGFX / PEG / PCI                                                                                          | Set which graphics device should be the Primary Display                                       |
| External Gfx Card Primary Display Conf. | Auto / PCIEx                                                                                                     | External Gfx Card Primary Display Configuration> Select Auto or Primary PCle                  |
| Internal Graphics                       | Auto / Disabled /<br>Enabled                                                                                     | Keep IGFX enabled based on the setup options                                                  |
| GTT Size                                | 2 MB / 4 MB / 8 MB                                                                                               | Select the GTT (Graphics Translation Table) Size                                              |
| Aperture Size                           | 256 MB                                                                                                           | Use this item to set the total size of Memory that must be left to the GFX Engine             |
| PSMI SUPPORT                            | Enabled / Disabled                                                                                               | PSMI Enabled / Disabled                                                                       |
| DVMT Pre-Allocated                      | 64M / 96M / 128M /<br>160M / 192M / 224M /<br>256M / 288M / 320M /<br>352M / 384M / 416M /<br>448M / 480M / 512M | Select DVMT5.0 Pre-Allocated (Fixed) Graphics Memory size used by the Internal Graphic Device |
| DVMT Total Gfx Mem                      | 128M / 256M / MAX                                                                                                | Select the size of DVMT (Dynamic Video Memory) 5.0 that the Internal Graphics Device will use |

| DiSM Size (GB)                  | [07]                                                                                             | DiSM Size for 2LM Sku                                                                                             |
|---------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Intel Graphics Pei Display Peim | Enabled / Disabled                                                                               | Enable / Disable Pei (Early) Display                                                                              |
| VDD Enable                      | Enabled / Disabled                                                                               | Enable / Disable forcing of VDD in the BIOS                                                                       |
| Configure GT for use            | Enabled / Disabled                                                                               | Enable / Disable GT configuration in BIOS                                                                         |
| PAVP Enable                     | Enabled / Disabled                                                                               | Enable / Disable Protected Audio Video Playback (PAVP)                                                            |
| Cdynmax Clamping Enable         | Enabled / Disabled                                                                               | Enable / Disable Cdynmax Clamping                                                                                 |
| Cd Clock Frequency              | 172.8 MHz / 307.2 MHz<br>/ 556.8 MHz / 652.8<br>MHz / Max CdClock freq<br>based on Reference Clk | Select the highest CD Clock frequency supported by the platform                                                   |
| GT PM Support                   | Enabled / Disabled                                                                               | Enable / Disable GT Power Management Support                                                                      |
| Skip Full CD Clock Init         | Enabled / Disabled                                                                               | Enabled: Skip Full CD clock initialization; Disabled: Initialize the full CD clock if not initialized by Gfx PEIM |
| VBT Select                      | eDP / MIPI                                                                                       | Select VBT for GOP Driver                                                                                         |
| IUER Button Enable              | Enabled / Disabled                                                                               | Enable / Disable IUER Button Functionality                                                                        |
| LCD Control                     | See Submenu                                                                                      |                                                                                                                   |
|                                 |                                                                                                  |                                                                                                                   |

#### 4.4.1.2 LCD Control

| Menu Item                 | Options                                                                                                                                    | Description                                                                                                                                                                                                                                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary IGFX Boot Display | VBIOS Default<br>EFP<br>LFP<br>EFP3<br>EFP2<br>EFP4                                                                                        | Select the Video Device which will be activated during POST. This has no effect if external graphics present.<br>Secondary boot display selection will appear based on your selection. VGA modes will be supported only on primary display |
| LCD Panel Type            | VBIOS Default<br>640x480 LVDS<br>800x600 LVDS<br>1024x768 LVDS<br>1280x1024 LVDS<br>1400x1050 LVDS 1<br>1400x1050 LVDS 2<br>1600x1200 LVDS | Select LCD panel used by Internal Graphics Device by selecting the appropriate setup item                                                                                                                                                  |

|                      | 1280x768LVDS1680x1050LVDS1920x1200LVDS1600x900LVDS1280x800LVDS1280x600LVDS2048x1536LVDS1366x768LVDS |                                                                                                                                                                                                                                                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Panel Scaling        | Auto<br>Off<br>Force Scaling                                                                        | Select the LCD panel scaling option used by the Internal Graphics Device                                                                                                                                                                                                                              |
| Backlight Control    | PWM Inverted<br>PWM Normal                                                                          | Backlight Control Settings                                                                                                                                                                                                                                                                            |
| Active LFP           | List of active options                                                                              | Select the Active LFP Configuration.<br>No LVDS: VBIOS does not enable LVDS<br>Int-LVDS: VBIOS enables LVDS driver by Integrated encoder<br>SDV0 LVDS: VBIOS eables LVDS driver by SDV0 encoder<br>No eDP: VBIOS does not enable eDP<br>eDP Port-A: LFP Driven by Int-DisplayPort encoder from Port-A |
| Panel Colour Depth   | 18 bit / 24 bit                                                                                     | Select the LFP Panel Color Depth                                                                                                                                                                                                                                                                      |
| Backlight Brightness | [0255]                                                                                              | Set Panel Brightness                                                                                                                                                                                                                                                                                  |

# 4.4.2 PCH-IO Configuration

| Menu Item                 | Options     | Description                                             |
|---------------------------|-------------|---------------------------------------------------------|
| PCI Express Configuration | See submenu | PCI Express Configuration Settings                      |
| SATA Configuration        | See submenu | SATA Device Options Settings                            |
| USB Configuration         | See submenu | USB Configuration Settings                              |
| Security Configuration    | See submenu | Security Configuration Settings                         |
| HD Audio Configuration    | See submenu | HD Audio Subsystem Configuration Settings               |
| Seriallo Configuration    | See submenu | Seriallo Configuration Settomgs                         |
| SCS Configuration         | See submenu | Storage and Communication Subsystem (SCS) Configuration |

| PSE Configuration                         | See submenu                                                     | Programmable Service Engine (PSE) Configuration                        |
|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| TSN GBE Configuration                     | See submenu                                                     | Time Sensitive Network GBE Configuration                               |
| PCIe Ref PII SSC                          | Auto / 0.0% / 0.1% /<br>0.2% / 0.3% / 0.4% /<br>0.5% / Disabled | Pcie Ref PII SSC Percentage. AUTO – Keep hw default, no BIOS override. |
| Flash Potection Range Registers<br>(FPRR) | Enabled / Disabled                                              | Enable Flash Protection Range Registers                                |
| PinCntrl Driver GPIO Scheme               | Enabled / Disabled                                              | Enable/Disable PinCntrl Driver GPIO Scheme                             |

#### 4.4.2.1 PCI Express Configuration

| Menu Item                | Options                               | Description                                                  |
|--------------------------|---------------------------------------|--------------------------------------------------------------|
| DMI Link ASPM Control    | Disabled / L0s / L1 /<br>LosL1 / Auto | The control of Active State Power Management of the DMI Link |
| Compliance Mode          | Enabled / Disabled                    | Enable when using Compliance Load Board                      |
| PCI Exopress Root Port x | See submenu                           | Sets the parameters for each single PCI-e Root Port          |

#### 4.4.2.1.1 PCI Express Root Port x

SECO

| Menu Item                  | Options                               | Description                                                                                                                                                                              |
|----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCI Express Root Port x    | Enabled / Disabled                    | Controls the PCI Express Root Port                                                                                                                                                       |
| Connection Type            | Built-in / Slot                       | Built-In: a built-in device is connected to this rootport. SlotImplemented bit will be clrear.<br>Slot: this rootport connects to used-sccessible slot. SlotImplemented but will be set. |
| ASPM                       | Disabled / LOs / L1 /<br>LosL1 / Auto | Set the ASPM level                                                                                                                                                                       |
| L1 Substates               | DFisabled / L1.1 / L1.1<br>& L1.2     | PCI Express L1 Substates                                                                                                                                                                 |
| Hot Plug                   | Enabled / Disabled                    | PCI Express Hot Plug Enable / Disable                                                                                                                                                    |
| PCle Speed                 | Auto / Gen1 / Gen2 /<br>Gen3          | Configure PCIe Speed                                                                                                                                                                     |
| 4.4.2.2 SATA Configuration |                                       |                                                                                                                                                                                          |

Menu Item Options Description

| SATA Controller(s) | Enabled / Disabled | Enable/Disable SATA Devices            |
|--------------------|--------------------|----------------------------------------|
| SATA Test Mode     | Enabled / Disabled | Test Mode Enable / Disable (Loop Back) |
| Port x             | Enabled / Disabled | Enable / Disable SATA Port             |
| Hot Plug           | Enabled / Disabled | Designate this port as Hot Pluggable   |
|                    |                    |                                        |

## 4.4.2.3 USB Configuration

| Menu Item                      | Options          | Description                                            |
|--------------------------------|------------------|--------------------------------------------------------|
| xHCI Compliance Mode           | Enable / Disable | Option to Enable Compliance Mode. Default is Disabled. |
| USB3 Link Speed Selection      | GEN1 / GEN2      | Select USB3 Link Speed as GEN1 or GEN2                 |
| 4.4.2.4 Security Configuration |                  |                                                        |

| Menu Item                     | Options            | Description                                                                                           |
|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|
| RTC Memory Lock               | Enabled / Disabled | Enable will lock bytes 38h-3Fh in the lower/upper 128-byte bank of RTC RAM                            |
| BIOS Lock                     | Enabled / Disabled | Enable / Disable the PCH BIOS Lock Enable feature. Required Enabled to ensure SMM protection of flash |
| Force unlock on all GPIO pads | Enabled / Disabled | If Enabled BIOS will force all GPIO pads to be in unlocked state                                      |
|                               |                    |                                                                                                       |

#### 4.4.2.5 HD Audio Configuration

| Menu Item                       | Options                                                         | Description                                                                                                                                                                                              |
|---------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HD Audio                        | Enabled / Disabled                                              | Control Detection of the HD-Audio device. When enabled, following menu items will appear                                                                                                                 |
| Audio DSP                       | Enabled / Disabled                                              | Enables/Disables Audio DSP                                                                                                                                                                               |
| Audio Link Mode                 | HD Audio Link<br>SSP (I2S)<br>SoundWire<br>Advanced Link Config | <ul> <li>Select link mode:</li> <li>1) HDA-Link [SDIO-1], DMIC[0-1]</li> <li>2) SSP[0-5], DMIC[0-1]</li> <li>3) SNDW[1-4]</li> <li>4) Advanced will allow to enable each interface separately</li> </ul> |
| HDA-Link Codec Select           | Platform Onboard<br>External Kit                                | Selects whether Platform Onboard Codec (single Verb Table installed) or External Codec Kit (multiple Verb Tables installed) will be used                                                                 |
| HD Audio Advanced Configuration | See submenu                                                     | HD Audio Subystem Advanced Configuration Settings                                                                                                                                                        |

#### 4.4.2.5.1 HD Audio Advanced Configuration

| Menu Item                              | Options                   | Description                                                                                  |
|----------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|
| iDisplay Audio Disconnect              | Enabled / Disabled        | Disconnects SDI2 signal to hide (disable) iDisplay Audio Codec                               |
| Codec Sx Wake Capability               | Enabled / Disabled        | Capability to detect wake initiated by a codec in Sx (e.g. by modem codec)                   |
| PME Enable                             | Enabled / Disabled        | Enables PME wake of HD Audio controller during POST                                          |
| HD Link Frequency                      | 6 MHz<br>12 MHz<br>24 MHz | Selects HD Audio Link frequency.<br>Applicable only if HAD codec supports selected frequency |
| iDisplay Audio Link Frequency          | 48 MHz<br>96 MHz          | Selects iDisplay Link frequency                                                              |
| iDisplay Audio Link T-Mode             | 2T / 4T / 8T / 16T        | Indicate whether SDI is operating in 1T, 2T (CNL) or 2T, 4T, 8T mode (ICL)                   |
| Autonomous Clock Stop SNDW #x          | Enabled / Disabled        | Enable / Disable Autonomous Clock Stop for SoundWire LINK number x                           |
| Data on Active Interval Select SNDW #x | 3 / 4 / 5 / 6             | Data on Active Interval Select Clock Periods for SoundWire LINK number x                     |
| Data on Delay Select SNDW #x           | 2/3                       | Data on Delay Select Clock Periods for SoundWire LINK number x                               |

# 4.4.2.6 Seriallo Configuration

| Menu Item        | Options            | Description                                                                                                                                                                                                                                                                                |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I2C3 Controller  | Enabled / Disabled | The following devices depend on each other:<br>I2C0 and I2C1-2-3                                                                                                                                                                                                                           |
| SPI1 Controller  | Enabled / Disabled | The following devices depend on each other:<br>UART0, UART1 and SPI0-1                                                                                                                                                                                                                     |
| SPI2 Controller  | Enabled / Disabled | Depends on: Thermal Subsystem in PCI mode.<br>SPI2 will be disabled if PSE SPI0, PWM or TGPIO are enabled.                                                                                                                                                                                 |
| UARTO Controller | Enabled / Disabled | The following devices depend on each other:<br>UART0, UART1 and SPI0-1<br>UART 0 (00:30:00) cannot be disabled when:<br>Child device is enabled like CNVi Bluetooth (\_SB.PC00.UA00.BTH0)<br>UART 0 (00:30:00) cannot be enabled when:<br>I2S Audio codec is enabled (\_SB.PC00.I2C0.HDAC) |



| UART1 Controller             | Enabled / Disabled /<br>Comm. Port (COM) | The following devices depend on each other:<br>UARTO, UART1 and SPIO-1                                                                                           |
|------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO IRQ Route               | IRQ14 / IRQ15                            | Route all GPIOs to one of the IRQ                                                                                                                                |
| Serial IO I2Cx Settings      |                                          | Configure SerialIO Controller> Set specific parameters                                                                                                           |
| Serial IO SPIx Settings      |                                          | Configure SerialIO Controller> Set specific parameters                                                                                                           |
| Serial IO UARTx Settings     |                                          | Configure SerialIO Controller> Set specific parameters                                                                                                           |
| WITT/MITT I2C Test Device    | Enabled / Disabled                       | Enable SIO I2C WITT Device and select which controller use it                                                                                                    |
| WITT/MITT SPI Test Device    | Enabled / Disabled                       | Enable SIO SPI WITT Device and select which controller use it                                                                                                    |
| UART Test Device             | Enabled / Disabled                       | Enable SIO UART Test Device and select which controller use it                                                                                                   |
| LPSS Device D3 State         | Enabled / Disabled                       | Enable / Disable the LPSS D3 before entering to OS                                                                                                               |
| Additional Serial IO devices | Enabled / Disabled                       | When enabled, ACPI will report additional devices connected to Serial IO                                                                                         |
| SerilalO timing parameters   | Enabled / Disabled                       | Enables additional timing parameters for all SeriallO controllers. Defaults can be changed in each controller setting. Platform restart quired to apply changes. |

## 4.4.2.7 SCS Configuration

Shell

| Menu Item                    | Options            | Description                                                                                        |
|------------------------------|--------------------|----------------------------------------------------------------------------------------------------|
| eMMC 5.1 Controller          | Enabled / Disabled | Enable or Disable SCS eMMC 5.1 Controller                                                          |
| eMMC 5.1 HS400 Mode          | Enabled / Disabled | Enable or Disable SCS eMMC HS400 Mode                                                              |
| Enable HS400 software tuning | Enabled / Disabled | Software tuning should improve eMMC HS400 stabilit at the expense of boot time                     |
| Driver Strength              | 33 / 40 / 50 Ohm   | Sets IO driver trength                                                                             |
| SDCard 3.0 Controller        | Enabled / Disabled | Enable or Disable SCS SDHC 3.0 Controller                                                          |
| 4.4.2.8 PSE Configuration    |                    |                                                                                                    |
| Menu Item                    | Options            | Description                                                                                        |
| PSE Controller               | Enabled / Disabled | Enables/Disables Programmable Service Engine (PSE). When enabled, following menu items will appear |
| LOG OUTPUT OFFSET            |                    | Determine the PSE log output region offset in memory                                               |
| LOG OUTPUT SIZE              |                    | Determine the PSE log output region size limitation in memory                                      |

Enables/Disables PSE Shell

Enabled / Disabled

| Eclite                      | Enabled / Disabled              | Enables/Disables PSE Eclite Service                                              |
|-----------------------------|---------------------------------|----------------------------------------------------------------------------------|
| CPU Temp Read               | Enabled / Disabled              | Enables/Disables PSE Eclite CPU Temp Read                                        |
| OOB                         | Enabled / Disabled              | Enables/Disables PSE OOB Service                                                 |
| WoL                         | Enabled / Disabled              | Enables/Disables PSE GBE Wake On Lan                                             |
| PSE Debug (JTAG/SWD) Enable | Enabled / Disabled              | Enables/Disables PSE JTAG/SWD Debug                                              |
| PSE JTAG/SWD PIN MUX        | Enabled / Disabled              | Enables/Disables PSE JTAG Pin Mux. Not allowed if Sci Pin Mux is enabled.        |
| CANO                        | None<br>PSE owned<br>Host owned | CANO has pin conflict with I2SO and TGPIO 16-17                                  |
| CAN1                        | None<br>PSE owned<br>Host owned | CANO has pin conflict with I2SO and TGPIO 14-15                                  |
| DMAO                        | None<br>PSE owned<br>Host owned | Select ownership for DMA0                                                        |
| DMA1                        | None<br>PSE owned<br>Host owned | Select ownership for DMA1                                                        |
| DMA2                        | None<br>PSE owned<br>Host owned | Select ownership for DMA2                                                        |
| GBE0                        | None<br>PSE owned<br>Host owned | Select ownership for GBE0                                                        |
| PSE GBE0 DLL Override       | Enabled / Disabled              | Enable/Disable PSE GBE0 DLL. To Enable this GBE0 must be Enabled.                |
| PSE GBE0 Tx_Delay           |                                 | Configure total number of delay elements in DLL slave. Default 16, Min 1, Max 63 |
| GBE1                        | None<br>PSE owned<br>Host owned | Select ownership for GBE1                                                        |
| PSE GBE1 DLL Override       | Enabled / Disabled              | Enable/Disable PSE GBE1 DLL. To Enable this GBE1 must be Enabled.                |
| PSE GBE1 Tx_Delay           |                                 | Configure total number of delay elements in DLL slave. Default 16, Min 1, Max 63 |
|                             |                                 |                                                                                  |

| GPIO/TGPIO 0 MUX SELECTION                           | Lower / Mid /<br>Top / All gpio | Lower: TGPIO(0-19), GPIO(20-29)<br>Lower: TGPIO(0-9, 20-29), GPIO(10-19)<br>Lower: TGPIO(10-29)    |
|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|
| GPIO/TGPIO 0 Pin Selection                           |                                 | Enables / Disables individual GPIO/TGPIO 0 pins                                                    |
| GPIO/TGPIO 1 MUX SELECTION                           | Lower / MID /<br>Top / All gpio | Lower: TGPIO(30-49), GPIO(50-59)<br>Lower: TGPIO(30-39, 50-59), GPIO(40-49)<br>Lower: TGPIO(40-59) |
| GPIO/TGPIO 1 Pin Selection                           |                                 | Enables / Disables individual GPIO/TGPIO 1 pins                                                    |
| List of PSE peripherals that can generate interrupts | Enabled / Disabled              | Enabled = Interrupt set to SB mode; Disabled = MSI mode                                            |
| DMA Test                                             | Enabled / Disabled              | Enables / Disables DMA test Device                                                                 |

## 4.4.2.9 TSN GBE Configuration

| Menu Item                   | Options                                                         | Description                                                                                                                                                                                                                                                                                                        |
|-----------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCH TSN LAN Controller      | Enabled / Disabled                                              | Enable/Disable Time Sensitive Network (TSN) LAN                                                                                                                                                                                                                                                                    |
| PCH TSN GBE Multi-Vc        | Enabled / Disabled                                              | Enable/Disable TSN Multi Virtual Channels                                                                                                                                                                                                                                                                          |
| PCH TSN GBE SGMII Support   | Enabled / Disabled                                              | Enable/Disable SGMII mode for PCH TSN GBE. Ports in SGMII mode with the same PLL common lane must use the same link speed. SATA or UFS may need to be disabled if TSN port is using the same PLL common lane. Please make sure IFWI has proper straps set for SGMII. Make sure Flex IO Lane Assignment is not NONE |
| PCH TSN Link Speed          | 24MHz 2.5Gbps<br>24MHz 1Gbps<br>38.4MHz 2.5Gbps<br>38.4MHz 1bps | PCH TSN Link Speed configuration                                                                                                                                                                                                                                                                                   |
| PCH TSN GBE x Multi-Vc      | Enabled / Disabled                                              | Enable/Disable TSN Multi Virtual Channels. TSN GBE x must be host owned.                                                                                                                                                                                                                                           |
| PCH TSN GBE x SGMII Support | Enabled / Disabled                                              | Enable/Disable SGMII mode for PCH TSN GBE x. Ports in SGMII mode with the same PLL common lane must use the same link speed. UFS will need to be disabled as this TSN port uses the same PLL common lane. Please make sure IFWI has proper straps set for SGMII. Make sure Flex IO Lane Assignment is not NONE     |
| PCH TSN GBE x Link Speed    | 24MHz 2.5Gbps<br>24MHz 1Gbps                                    | PCH TSN GBE x Link Speed configuration                                                                                                                                                                                                                                                                             |

38.4MHz 2.5Gbps 38.4MHz 1bps

# 4.5 Security menu

| Menu Item                       | Options     | Description                                                          |
|---------------------------------|-------------|----------------------------------------------------------------------|
| Administrator Password          |             | Set Administrator Password                                           |
| User Password                   |             | Set User Password                                                    |
| List of available storage units |             | HDD Security Configuration for selected drive> Set HDD User Password |
| Secure Boot                     | See submenu | Secure Boot configuration                                            |

4.5.1 Secure Boot submenu

| Menu Item            | Options            |                                                                                                                                                                        |
|----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secure Boot          | Enabled / Disabled | Secure Boot feature is Active if Secure Boot is Enabled, Platform Key (PK) is enrolled and System is in User Mode. The mode change requires platform reset.            |
| Secure Boot Mode     | Standard / Custom  | Secure Boot Mode options: Standard or Custom. In Custom mode, Secure Boot Policy variables can be configured by a physically present user without full authentication. |
| Restore Factory Keys |                    | Force system to User Mode. Install factory default Secure Boot key databases.                                                                                          |
| Reset To Setup Mode  |                    | Delete all Secure Boot key databases from NVRAM                                                                                                                        |
| Key management       | See submenu        | Enable expert users to modify Secure Boot Policy variables without full authentication.                                                                                |

#### 4.5.1.1 Key Management submenu

| Menu Item                | Options            |                                                                                                                                 |
|--------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Factory Key Provision    | Enabled / Disabled | Install factory default Secure Boot keys after the platform reset and while the system is in Setup mode                         |
| Restore Factory Keys     |                    | Force System to User Mode. Install factory default Secure Boot key databases                                                    |
| Reset To Setup Mode      |                    | Delete all Secure Boot key databases from NVRAM                                                                                 |
|                          |                    |                                                                                                                                 |
| Enroll Efi Image         | File System Image  | Allow the image to run in Secure Boot mode. Enrol SHA256 Hash certificate of a PE Image into Authorized Signature Database (db) |
| Remove 'UEFI CA' from DB |                    | Device Guard ready system must not list 'Microsoft UEFI CA' Certificate in Authorized Signature database (db)                   |



| Restore DB defaults                                                                                                                                               | Restore DB variable to factory defaults                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Platform key (PK)<br>Key Exchange Keys<br>Authorized Signatures Set New Var<br>Forbidden Signatures Append Key<br>Authorized Timestamps<br>OS Recovery Signatures | Enrol factory Defaults or load certificates from a file:<br>1. Public Key Certificate in:<br>a) EFI_SIGNATURE_LIST<br>b) EFI_CERT_X509 (DER encoded)<br>c) EFI_CERT_RSA2048 (bin)<br>d) EFI_CERT_SHAxxx<br>2. Authenticated UEFI Variable<br>3. EFI PE/COFF Image (SHA256), Key Source: Factory, External, Mixed |

# 4.6 Boot menu

| Menu Item                                                                                                                                                      | Options                                                                                               | Description                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup Prompt Timeout                                                                                                                                           | 0 65535                                                                                               | Number of seconds to wait for setup activation key. 655535 means indefinite waiting.                                                                                                                                                          |
| Bootup NumLock State                                                                                                                                           | On / Off                                                                                              | Select the keyboard NumLock state                                                                                                                                                                                                             |
| Quiet Boot                                                                                                                                                     | Enabled / Disabled                                                                                    | Enables or disables Quiet Boot option                                                                                                                                                                                                         |
| Fast Boot                                                                                                                                                      | Enabled / Disabled                                                                                    | Enables or disables boot with initialization of a minimal set of devices required to launch active boot option.<br>Has no effect for BBS boot options.                                                                                        |
| SATA Support                                                                                                                                                   | Last Boot SATA Devices Only<br>All SATA Devices                                                       | If Last Boot SATA Devices Only, only last boot SATA device will be available in Post. If All SATA Devices, all SATA devices will be available in OS and Post.                                                                                 |
| NVMe Support                                                                                                                                                   | Enabled / Disabled                                                                                    | If Disabled, NVMe device will be skipped                                                                                                                                                                                                      |
| USB Support                                                                                                                                                    | Disabled<br>Full Initial<br>Partial Initial                                                           | If Disabled, all USB devices will NOT be available until after OS boot. If Partial Initial, USB Mass Storage and specific USB port/device will NOT be available before OS boot. If Enabled, all USB devices will be available in OS and Post. |
| PS2 Devices Support                                                                                                                                            | Enabled / Disabled                                                                                    | If Disabled, PS2 devices will be skipped                                                                                                                                                                                                      |
| Network Stack Driver Support                                                                                                                                   | Enabled / Disabled                                                                                    | If Disabled, Network Stack Driver will be skipped                                                                                                                                                                                             |
| Redirection Support                                                                                                                                            | Enabled / Disabled                                                                                    | If Disabled, Redirection function will be disabled                                                                                                                                                                                            |
| Boot Option #1<br>Boot Option #2<br>Boot Option #3<br>Boot Option #4<br>Boot Option #5<br>Boot Option #6<br>Boot Option #7<br>Boot Option #8<br>Boot Option #9 | Hard Disk0<br>Hard Disk1<br>eMMC<br>CD/DVD<br>SD<br>USB Device<br>Network<br>Other Device<br>Disabled | Select the system boot order                                                                                                                                                                                                                  |
| UEFI EMMC Drive BBS Priorities                                                                                                                                 |                                                                                                       | Specifies the Boot Device Priority sequence from available UEFI EMMC Drivers                                                                                                                                                                  |
| UEFI SD Drive BBS Priorities                                                                                                                                   |                                                                                                       | Specifies the Boot Device Priority sequence from available UEFI SD Drivers                                                                                                                                                                    |

# 4.7 Save & Exit menu

| Menu Item                           | Options | Description                                                  |
|-------------------------------------|---------|--------------------------------------------------------------|
| Save Changes and Exit               |         | Exit system setup after saving the changes.                  |
| Discard Changes and Exit            |         | Exit system setup without saving any changes.                |
| Save Changes and Reset              |         | Reset the system after saving the changes.                   |
| Discard Changes and Reset           |         | Reset the system without saving any changes.                 |
| Save Changes                        |         | Save the changes done so far to any of the setup options.    |
| Discard Changes                     |         | Discard the changes done so far to any of the setup options. |
| Restore Defaults                    |         | Restore/Load Default values for all the setup options        |
| Save as User Defaults               |         | Save the changes done so far as User Defaults                |
| Restore User Defaults               |         | Restore the User Defaults to all the setup options           |
| List of EFI boot managers available |         | Boot override to selected boot manager                       |

# Chapter 5. Appendices

• Thermal Design



# 5.1 Thermal Design

Highly integrated modules, like this product, offer very high performance within small dimensions. On the other hand, the miniaturization of ICs and the high operating frequencies of the processors lead to high heat generation that must be dissipated in order to maintain the CPU within its allowed temperature range.

The operating temperature specified in the Technical Features of this product indicates the temperature range in which any and all parts of the heat spreader / heat sink must remain, in order for SECO to guarantee functionality. Hence, these numbers do not necessarily indicate the suitable environmental temperature.

The heat spreader is not intended to be a guaranteed standalone cooling system, but should be used only as a supplemental means of transferring heat to another dissipation system (i.e. heat sinks, fans, heat pipes etc).

It is the customer's responsibility to design and apply an application-dependent cooling system, capable of ensuring that the heat spreader / heat sink temperature remain within the indicated range of the module.

It is an absolute requirement that the customer, after thorough evaluation of the processor's workload in the actual system application, the system enclosure and consequent air flow/Thermal analysis, accurately study and develop a suitable cooling solution for the assembled system.

SECO can provide specific heatspreaders and heatsinks for this module, but please remember that their use must be evaluated accurately inside the final system, and that they should be used only as a part of a more comprehensive ad-hoc cooling solutions.

| Ordering Code           | Description                                                              |
|-------------------------|--------------------------------------------------------------------------|
| RC93-DISS-1-SKUS1-4-PK  | SMARC HEAT SPREADER: HALLEY Heat Spreader (PASSIVE), SKUS1-4 - Packaged  |
| RC93-DISS-1-SKUS5-12-PK | SMARC HEAT SPREADER: HALLEY Heat Spreader (PASSIVE), SKUS5-12 - Packaged |
| RC93-DISS-2-SKUS1-4-PK  | SMARC HEAT SINK: HALLEY Heat Sink (PASSIVE), SKUS1-4 – Packaged          |
| RC93-DISS-2-SKUS5-12-PK | SMARC HEAT SINK: HALLEY Heat Sink (PASSIVE), SKUS5-12 – Packaged         |




#### Warning!

The thermal solutions available with SECO boards are tested in the commercial temperature range (0-60°C), without housing and inside climatic chamber. Therefore, the customer is suggested to study, develop and validate the cooling solution for his system, considering ambient temperature, processor's workload, utilisation scenarios, enclosures, air flow and so on.

In particular, the heatspreader is not intended to be a cooling system by itself, but only as the standard means for transferring heat to cooler, like heatsinks, cold plate, heat pipes and so on.



SECO S.p.A. - Via A. Grandi, 20 52100 Arezzo - ITALY Ph: +39 0575 26979 - Fax: +39 0575 350210 <u>www.seco.com</u>

